FLIP-41: Unify Binary format for Keyed State

Authors: Tzu-Li (Gordon) Tai, Congxian Qiu, Stefan Richter, Kostas Kloudas

® Status
® Motivation
® Current Status
® Proposal
® Migrating from Previous Savepoints
® References
Status
Discussion http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-FLIP-41-Unify-Keyed-State-Snapshot-Binary-Format-for-
thread Savepoints-td29197.html
Vote thread https://lists.apache.org/thread.html/f6fcb40d2bf9d2a889eb20cc7b38897b340ea897832770ad2b7b27d5%40%3Cdev.flink.apache.
org%3E
JIRA)) A .
FLINK-20976 - Getting issue details... STATUS
Release 113
Motivation

Currently, Flink managed user keyed state is serialized with different binary formats across different state backends.
The inconsistency exists as the following, for both checkpoints and savepoints:

* Different ways of writing metadata to facilitate iterating through serialized state entries across key groups on restore.
® Keys and values of the keyed state entries (e.g. Val ueSt at e, Li st St at e, MapSt at e, etc.) also have different binary formats in snapshots.

The differences mainly root from the fact that different state backends maintain working state differently, and consequently have specialized formats that
allows them to introduce as less overhead as possible when taking a snapshot of the working state as well as restoring from the serialized form.

While for checkpoints it is completely reasonable to have state backend specific formats for more efficient snapshots and restores, savepoints should be
designed with interoperability in mind and allow for operational flexibilities such as swapping state backends across restores.

Moreover, with the current status of state backend code, state backends are responsible of defining what format they write with. This adds overhead to
developing new state backends in the future, as well as the possibility that yet another incompatible format is introduced, making the unification even
harder to achieve.

So, the main goal of this proposal is the following:

® Unify across all state backends a savepoint format for keyed state that is more future-proof and applicable for potential new state
backends. Checkpoint formats, by definition, are still allowed to be backend specific.

® Rework abstractions related to snapshots and restoring, to reduce the overhead and code duplication when attempting to implement a new state
backend.

Current Status

NOTE - the remainder of this document uses the following abbreviations.

KG: key group

K: partition key

NS: namespace

SV: state value (e.g. value of a Val ueSt at e, complete map of a MapSt at e, etc.)
UK: key in a user MapSt at e

UV: value in a user MapSt at e

TS: timestamp (of timers)

For us to reason about the proposed unified format later in this document, it is important to understand the current formats and the historical reasons of
why they were defined as they are right now.

The written keyed state in snapshots of each operator contains mainly two parts -

http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-FLIP-41-Unify-Keyed-State-Snapshot-Binary-Format-for-Savepoints-td29197.html
http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-FLIP-41-Unify-Keyed-State-Snapshot-Binary-Format-for-Savepoints-td29197.html
https://lists.apache.org/thread.html/f6fcb40d2bf9d2a889eb20cc7b38897b340ea897832770ad2b7b27d5%40%3Cdev.flink.apache.org%3E
https://lists.apache.org/thread.html/f6fcb40d2bf9d2a889eb20cc7b38897b340ea897832770ad2b7b27d5%40%3Cdev.flink.apache.org%3E
https://issues.apache.org/jira/browse/FLINK-20976

1. meta information for the keyed backend, such as the snapshot of the key serializer being used, as well as meta information about the registered
keyed states.
2. actual state entries, sequence ordered by (KG State 1D).

Keyed Backend Meta Information
Meta

Information State Meta 0 State Meta M

(K, V) pairs for state 0 (K, V) pairs for state M

Key Group 0
Timers 0 Timers P

(K, V) pairs for state 0 (K, V) pairs for state P

Key Group N
Timers 0 Timers P

Writing of the meta information is governed by the KeyedBackendSer i al i zat i onPr oxy class. The class is commonly used by all subclasses of Snaps
hot St r at egy, such as RocksFul | Snapshot St r at egy and HeapSnapshot St r at egy, before writing the state data. Therefore, this part is already
unified.

The difference lies in the format of the sequence of state entries. Specifically, they differ by -

1. the binary format of the key and values in each state entry, and
2. metadata or markers written along with the contiguous state entries to facilitate reading them from state handle streams on restore.

State entries key value binary layout

The difference in binary layout for key and values in state entries across state backends relates to how they are tailored for how each backend maintains
working state.

For the HeapKeyedSt at eBackend, working state is maintained as in-memory state tables that are partitioned by key group. The state tables are nested
maps of Map<NS, Map<K, SV>>, providing an outer scope by namespace and an inner scope by key.

Naturally, it is easy to iterate through the state objects by key group when writing to the checkpoint stream during a snapshot. Offsets for each key group is
written in the savepoint metadata file, and each state value is written with its namespace and key so that it on restore, deserialized state objects can
correctly re-populate the state tables.

For the RocksDBKeyedSt at eBackend, working state is already serialized and maintained as key-value pairs in RocksDB, with all pairs for a registered
state stored in a single column family. In order to be able to iterate through states values in a column family by order of key group during a snapshot, the
keys of working state in RocksDB are prepended with the key group ID (int), relying on the fact that RocksDB organizes the data in sorted ordering on the
keys. Theoretically, since we already write the offsets of each key group in the savepoint's metadata, the final snapshotted binary layout does not need to
have the key group prepended on each key. However, to exclude that, we would introduce extra overhead around removing and prepending again the key
group bytes during snapshotting and restoring bytes back into RocksDB. This isn't reasonable considering the small size of the key group bytes; therefore,
each snapshotted state value of a RocksDBKeyedSt at eBackend has the exact same layout as working state, containing also the key group bytes.

The table below provides an overview of the formats for the supported state primitives. Note that although the formats below are represented as tuples (2-
tuple for RocksDB to represent it as a key-value entry in RocksDB, and a 3-tuple for heap to represent the levels of the nested map of a state table), the
binary layout in the snapshot is really just a direct concatenation of all the serialized values.

RocksDBKeyed HeapKeyed Note
StateBackend StateBackend
ValueState [ConpositeKey | [NS, K SV .) o S)
(KG K, N9, ® Conposi teKey(. ..) represents the composite key built via RocksDBSer i al i zedConposite
SV] KeyBui | der #bui | dConposi t eKeyNanmespace.

® Moreover, the MSB bit of the composite key may also be flipped if it is the last entry of a state for
a given key group (see RocksFul | Snapshot St r at egy#set Met aDat aFol | owsFl agl nKey).
Note: this only applies to snapshotted state; keys in working state should never have the MSB bit

flipped.
ListState [Conposi t eKey [NS, K SV]
(KG K, Ng), ® The format of SV for Li st St at e is different between heap and RocksDB backend.
SV] ® For the heap backend, the format is defined by the serializer obtained from the state descriptor,

whichis a Li st Seri al i zer.
® RocksDB backend defines its own format in RocksDBLi st St at e#seri al i zeVal uelLi st .

MapState [Conposi t eKey [NS, K SV]
(KG K, NS) ® For the heap backend, each serialized state data is the complete user MapSt at e, written using

UK, W] the serializer obtained from the state descriptor, which is a MapSeri al i zer.
® For RocksDB backend, each serialized state data is a single entry in the user MapSt at e. User
map key and value serializers are obtained from the MapSeri al i zer provided by the state
descriptor.

AggregatingState [Conposi t eKey [NS, K sV
(KG K, N9,
sv]

ReducingState [Conposi t ekey [NS, K 8V
(KG K Ng),
svV]

FoldingState [Conposi t eKey [NS, K sV
(KG K, Ns),

sv]
[KG:: TS :: TS :: K:: NS
K :: NS ¢ the timestamp is a long value with MSB sign bit flipped.
(empty)] ® Value is empty in RocksDB

Timers

Metadata or markers for state iteration
The heap and RocksDB backend has different approaches in how they write metadata or markers in the checkpoint stream to facilitate iterating through
contiguous state values of key groups at restore time.

The reason for the difference is mainly due to the fact that for the heap backend, the number of state values is known upfront when taking a snapshot. The
following subsections describes this in detail.

HeapKeyedSt at eBackend

For the HeapKeyedSt at eBackend, the binary layout of the contiguous state values of a single key group is as follows:

Key group index (int)
State ID (short) Number of (NS, K) mappings
State 0
State value @ State value Y
State ID (short) Number of (NS, K) mappings
State M
State value @ State value Z

® The key group index at the beginning of the key group is not a requirement for being able to iterate the contiguous state values. It is written just
for sanity checks on restore that the following state values do belong to the expected key group identified by its offset.

® The number of states to read from the stream was already determined after reading meta information about the keyed state state backend.

®* The number of (NS, K) state entries to read for each state is written before the contiguous values. It is possible to get the total number of
mappings upfront because state tables are in-memory.

Please see HeapRest or eQper at i on#r eadKeyG oupSt at eDat a() for the implementation.

RocksDBKeyedSt at eBackend

For the RocksDBKeyedSt at eBackend, the binary layout of the contiguous state values of a single key group is as follows:

State ID (short)
State @
State value @ State value X (flipped MSB)
State ID (short)
State 1
State value @ State value Y (flipped MSB)
State ID (short)
State M State value 0 State value Z (flipped MSB)
END_OF_KEY_GROUP_MARK (@xFFFF)

® Unlike the heap backend, it is not possible to know the number of (NS, K) state value mappings upfront when taking a snapshot. Instead, the
RocksDB backend writes metadata along with the stream of contiguous state values in a key group.

® The last state value mapping for a keyed state will have its MSB bit flipped to indicate that it is the last value for the currently iterated keyed state.
Since the values are prepended with the key group which is always a positive integer, the result of flipping the MSB bit of the serialized value
would always be setting the MSB bit to 1.

® When iterating through the contiguous values, if a value with a contiguous bit is reached, the next value would either be a state ID which indicates
that the next values are of another new keyed state of the key group, or an END_OF_KEY_GROUP_MARK which indicates that there are no more
values to be read for the key group.

Please see RocksDBFul | Rest or eOper at i on#r eadKvSt at eDat a() for the implementation.

Proposal

This proposal covers 2 goals:

® Define the unified binary format for keyed state backends.
® Extend / adjust internal abstractions around SnapshotStrategy and RestoreOperation so that new backends added in the future writes keyed state
in savepoints in the unified format.

Unified binary format for keyed state

We propose to unify the binary layout for all currently supported keyed state backends to match the layout currently adopted by RocksDB, for all levels
including the layout of contiguous state values of a key group as well as layout of individual state primitives.

The main consideration points for this decision is the following:

® The current way the heap backends iterates state values puts a constraint that the keyed state backend needs an efficient way to know the total
number of (NS, K) state entries, so that this count can be written before the contiguous state values. This highly depends on the state backend;
for example, for RocksDB obtaining this count is non-trivial. The approach that RocksDB adopts, by injecting markers and flags to indicate the
end of states and key groups when reading from the file streams is definitely the more general and future-proof approach.

®* The RocksDB backend snapshot format has excessive written data due to the key group bytes prepended for each (NS, K) state value
mapping. As previously explained, the key group bytes are actually not required to be written with every state mapping in snapshots; they are only
required for working state maintained by RocksDB to have an ordering of key value entries by key group. However, the size overhead of this
redundancy would be far less prominent than the extra work that RocksDB otherwise requires to truncate and prepend again the key group bytes
on each snapshot and restore operation.

* Keyed MapSt at e are written as a single state value with the current heap backend's snapshot layout, while for RocksDB backend, a single state
value maps to an entry in the MapSt at e. The advantage in maintaining entries in the MapSt at e as independent key-values in RocksDB is
obvious - accessing and updating random keys in the MapSt at e would not require serializing and deserializing the whole map. Trying to merge
the separate entries when snapshotting so that the snapshotted version of MapSt at e is a single state value would not work, since a user MapSt a
t e can have arbitrarily large number of entries that would not fit into memory (again, this is a constraint because the serializer for writing maps, i.
e. the MapSeri al i zer, writes in a format that requires the total number of mappings to be known upfront). Moreover, the work of merging the
entries on snapshot and flattening them again simply is non-trivial compared to dumping the key value bytes in RocksDB.

To conclude this, the format that RocksDB currently uses is the more general approach for arbitrarily large keyed state. It is feasible to allow heap backend
to work with RocksDB backend's current format, but not the other way around.

Implementation

The goal for the proposed implementation is the following:

Allow backends to have different snapshot formats for checkpoints and savepoints

Allow seamless migration from previous Flink versions

Use a common savepoint strategy used by all keyed backends to define the unified per key group binary layout of contiguous state entries

Let binary layouts of state entries be defined by key and value serializers of each state primitive's descriptor. Internal state accessors that need to
eagerly serialize / deserialize state (e.g. subclasses of Abst r act RocksDBSt at e) should be able to use those directly, instead of defining their
own format.

The following sections goes over the main design choices.

Rework Snapshot St r at egy class hierarchy to differentiate between savepoint and checkpoint
strategies

Currently, the binary layout for keyed state in savepoints for the heap and RocksDB state backend is defined by HeapSnapshot St r at egy and RocksFul

| Snapshot St r at egy, respectively. Those classes are used for both savepoints as well as full checkpoints. To be able to define the layout for savepoints
and checkpoints of keyed state independently, the hierarchy for Snapshot St r at egy needs to be extended to differentiate a KeyedBackendSavepoi nt S
trat egyBase and a KeyedBackendCheckpoi nt St r at egyBase. All existing strategies, including HeapSnapshot St r at egy, RocksFul | Snapshot St
rat egy and RocksDBI ncr enent al Snapshot St r at egy should be rebased onto the checkpoint strategy base (and potentially renamed for better
clarity).

Moreover, it should be made explicit that all keyed backends are composed of two different snapshotting strategies, one for savepoints and one for
checkpoints. Therefore, the Abst r act KeyedBackend should be instantiated with a KeyedBackendSavepoi nt St r at egyBase and a KeyedBackendC
heckpoi nt St r at egyBase, with the correct one being respected on each snapshot attempt. This would eliminate the need for implementations of Abst r
act KeyedBackend to be responsible of any snapshotting concerns as it now comes via composition.

As part of this refactoring effort, we should also work towards a clearer base abstraction for all snapshot strategy implementations. For example, the
strategies now commonly include a synchronous part that essentially prepares resources to be used by the asynchronous part of the snapshot. This can
be better abstracted as the following:

public abstract Abstract Snapshot Strategy<T extends StateCbject, SR extends Snapshot Resources> inpl enents
Snapshot St r at egy<Snapshot Resul t <T>> {
@verride
public final Runnabl eFuture<Snapshot Resul t <T>> snapshot(...) {
Snapshot Resour ces snapshot Resources = syncPrepar eResour ces();
return asyncSnapshot (snapshot Resources, ...);

}

protected abstract SR syncPrepareResources();
protected abstract Runnabl eFuture<Snapshot Resul t <T>> asyncSnapshot (
SR syncPart Resour ce,
I ong checkpointld,
I ong tinestanp,
Checkpoi nt St reanfact ory streanfactory,
Checkpoi nt Opti ons checkpoi nt Opti ons);

Snapshot Resour ces encapsulates resources for the asynchronous part of snapshots, such as -

® read-only snapshot of the state (for RocksDB, a snapshot of the database and for heap, a snapshot of the copy-on-write state tables). Any
resources created need to be released when the asynchronous part completes.
® snapshot of all registered states' meta information

public interface Snapshot Resources {
voi d rel ease();
Li st <St at eMet al nf oSnapshot > get St at eMet al nf oSnapshot s() ;

Unifying the format for keyed state via KeyedBackendSavepoi nt St r at egyBase

KeyedBackendSavepoi nt St r at egyBase is responsible for defining the unified binary layout for keyed state in savepoints. Subclasses would only be
responsible for providing a state backend specific KeyedSt at eSavepoi nt Snapshot Resour ce. Apart from the state snapshot and meta info snapshots,
the KeyedSt at eSavepoi nt Snapshot Resour ce additionally provides iterators for snapshotted keyed state -

public interface KeyedStat eSavepoi nt Snapshot Resour ces extends Snapshot Resources {
Li st <KeyedSt at eSnapshot | t er at or > get KeyedSt at eSnapshot I terators();
}

The asynchronous part of the snapshot defines the per key group unified binary layout for keyed state in savepoints, and is made final. It returns a Savepo
i nt KeyG oupsSt at eHandl e, which functionality wise is currently identical to KeyGr oups St at eHandl e. The reason to introduce a new type of state
handle specifically for savepoints is so that on restore, we can use the state handle type to determine which restore strategy to use.

public abstract class KeyedBackendSavepoi nt Strat egyBase<K, KSR extends KeyedSt at eSavepoi nt Snapshot Resour ce>
i mpl ement s Abstract Snapshot St rat egy<Savepoi nt KeyedSt at eHandl e, KSR> {
@verride
public final Runnabl eFuture<Savepoi nt KeyedSt at eHandl e> asyncSnapshot (KSR resources, ...) {
/1 return an AsyncPartCall able inplenentation that defines the unified per key group |ayout of state
entries

}

@verride
protected abstract KSR syncPrepareResources();

Within the asynchronous part of the snapshot, keyed state snapshot iterators are obtained from the KeyedSt at eSavepoi nt Snapshot Resour ce.
Please refer to the next section for more details regarding the iterators.

Iterating state entries for keyed state snapshots: KeyedSt at eSnapshot | t er at or and KeyedSt at eSna
pshot Per KeyGr oupMer gel t er at or

A KeyedSt at eSnapshot | t er at or is an iterator that iterates a single registered state entries in key group order. The asynchronous part of the snapshot
operation then uses a KeyedSt at eSnapshot Per KeyGr oupMer gel t er at or to combine multiple KeyedSt at eSnapshot | t er at or to iterate across
all registered states key group by key group.

The interface for the KeyedSt at eSnapshot | t er at or is proposed to be the following:

public interface KeyedStateSnapshotlterator {
voi d next();
int getStateld();
int getKeyG oup();
byte[] getKey();
byte[] getVal ue();
bool ean i sNewKeyG oup();
bool ean isValid();

The iterator returns a (byte[], byte[]) key value pair for each state entry. Subclass implementations are responsible for serializing state objects in
the case of state backend that only lazily serializes state on snapshots (e.g. the heap backend). This should also provide enough flexibility for state
backends that may have a mix of serialized and non-serialized working state, such as the disk-spilling heap backend that is currently being discussed [1].

Restore procedures and migrating from older versions

Likewise to the rework of the Snapshot St r at egy hierarchy to differentiate between savepoints and checkpoints, the Rest or eQper at i on hierarchy
should also be changed correspondingly to include KeyedBackendSavepoi nt Rest or eOper at i on and KeyedBackendCheckpoi nt Rest or eOper at i
on. All existing implementations for keyed backend restore procedures, namely HeapRest or eOper at i on, RocksDBFul | Snapshot Rest or eQper ati on
, and RocksDBI ncr enment al Snapshot Rest or eOper at i on should be rebased onto the checkpoint restore operation and possibly renamed for clarity
purposes.

On restore, the keyed state backend builders first check the type of the assigned restored state handles. The following scenarios may be encountered:
® |fitis a Savepoi nt KeyG oupsSt at eHandl e, then the restored state is assured to be a savepoint of the new unified format. It is safe to restore
state from the state handles using KeyedBackendSavepoi nt Rest or eQper ati on.
* [fitis a KeyGr oupsSt at eHandl e, then we have either restored from a checkpoint after the rework, or a savepoint before the rework. Either way,

it will be safe to continue using the existing keyed state restore operations (HeapRest or eOper at i on, RocksDBFul | Snapshot Rest or eOper a
tion, and RocksDBI ncr ement al Snapshot Rest or eQper at i on) to read state, since these were previously used for savepoints as well.

Migrating from Previous Savepoints

With the proposed implementation, users will be able to seamlessly migrate from previous savepoints of older Flink versions. When reading from older
versions, old read paths will be used. From then on, new savepoints of keyed state will be written in the new unified format.

References

[1] http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Proposal-to-support-disk-spilling-in-HeapKeyedStateBackend-td29109.html

http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Proposal-to-support-disk-spilling-in-HeapKeyedStateBackend-td29109.html

	FLIP-41: Unify Binary format for Keyed State

