
Nutch 1.X RESTAPI
Nutch 1.x REST API v1.0

Nutch 1.x REST API v1.0
Introduction
Instructions to start Nutch Server
REST API Calls

Administration
Get server status
Stop server

Configuration
Configuration's list
Configuration parameters
Create configuration
Get property value
Set property value
Delete configuration

Jobs
Listing all jobs
Get job info
Stop job
Kill job
Create job

Seed Lists
Create seed list
Get seed lists

Database
More

Introduction

This page documents the Nutch 1.X REST API v1.0.

It provides details on the type of REST calls which can be made to the Nutch 1.x REST API. Many of the API points are adapted from the ones provided by
the . One of the reasons to come up with a REST API is to integrate D3 to show visualizations about the working of a Nutch crawl.Nutch 2.x REST API

Instructions to start Nutch Server

Follow the steps below to start an instance of the Nutch Server on localhost.

Starting Nutch Server

% cd runtime/local
% ./bin/nutch startserver -port <port_number> \[If the port option is not mentioned then by default the server
starts on port 8081\]

The different API calls that can be made are listed below.

REST API Calls

Administration

This API point is created in order to get server status and manage server's state.

Get server status

GET /admin

Response contains server startup date, availible configuration names, job history and currently running jobs.

https://wiki.apache.org/nutch/NutchRESTAPI

{
 "startDate":1424572500000,
 "configuration":[
 "default"
],
 "jobs":[

],
 "runningJobs":[

]
}

Stop server

It is possible to stop running server using ./admin/stop

GET /admin/stop

Response

Stopping in server on port 8081

Configuration

Configuration's list

GET /config

Response contains names of available configurations.

["default","custom-config"]

Configuration parameters

GET /config/{configuration name}

Examples:
GET /config/default
GET /config/custom-config

Response contains parameters with values

 {
 "anchorIndexingFilter.deduplicate":"false",
 "crawl.gen.delay":"604800000",
 "db.fetch.interval.default":"2592000",
 "db.fetch.interval.max":"7776000",

 }

Create configuration

Creates new Nutch configuration with given parameters.

POST /config/create

Examples:
POST /config/create
 {
 "configId":"new-config",
 "params":{"anchorIndexingFilter.deduplicate":"false",... }
 }

curl
curl -X POST -H "Content-Type: application/json" http://localhost:8081/config/create -d '{"configId":"new-
config", "params":{"anchorIndexingFilter.deduplicate":"false"}}'

Response is created config's id.

 new-config

Get property value

GET /config/{configuration name}/{property}

Examples:
GET /config/default/anchorIndexingFilter.deduplicate

Response contains parameter's value as string

 false

Set property value

{

PUT /config/{configuration name}/{property}

Examples:
PUT /config/default/http.agent.name

Response contains parameter's value as string

 NUTCH_SOLR

Delete configuration

DELETE /config/{configuration name}

Examples:
DELETE /config/new-config

Jobs

This point allows job management, including creation, job information and killing of a job. For a complete tutorial, please follow How to run Jobs using the
.REST service

Listing all jobs

curl -X GET -H 'Content-Type: application/json' -i http://localhost:8081/job

Response contains list of all jobs (running and history)

[
 {
 "id":"job-id-5977",
 "type":"FETCH",
 "confId":"default",
 "args":null,
 "result":null,
 "state":"FINISHED",
 "msg":"",
 "crawlId":"crawl-01"
 }
 {
 "id":"job-id-5978",
 "type":"PARSE",
 "confId":"default",
 "args":null,
 "result":null,
 "state":"RUNNING",
 "msg":"",
 "crawlId":"crawl-01"
 }
]

https://wiki.apache.org/nutch/Nutch_1.X_RESTAPI/RunningJobsTutorial
https://wiki.apache.org/nutch/Nutch_1.X_RESTAPI/RunningJobsTutorial

Get job info

GET /job/job-id-5977

Response

 {
 "id":"job-id-5977",
 "type":"FETCH",
 "confId":"default",
 "args":null,
 "result":null,
 "state":"FINISHED",
 "msg":"",
 "crawlId":"crawl01"
 }

Stop job

POST /job/job-id-5977/stop

Response

 true

Kill job

GET /job/job-id-5977/abort

}

Response
{

 true

}

Create job

Create job with given parameters. You should either specify Job Type(like INJECT, GENERATE, FETCH, PARSE, etc) or jobClassName.

curl -X POST -H 'Content-Type: application/json' -i http://localhost:8081/job/create --data '{"crawlId":"
crawl01", "type":"INJECT", "confId":"default", "args": {"url_dir":"seedFiles/seed-1641959745623", "crawldb":
"crawldb"}}'

Response object is provided below

{
 "id": "crawl01-default-INJECT-1877363907",
 "type": "INJECT",
 "confId": "default",
 "args": {
 "url_dir": "seedFiles/seed-1641959745623",
 "crawldb": "crawldb"
 },
 "result": null,
 "state": "RUNNING",
 "msg": "OK",
 "crawlId": "crawl01"
}

Seed Lists

Create seed list

The endpoint enables the user to create a seedlist and return the temporary path of the file created. This path should be passed to the /seed/create url_dir
parameter of the job. It's also worth noting that the seedINJECT

curl -X POST -H 'Content-Type: application/json' -i http://localhost:8081/seed/create --data '{"name":"test","
seedUrls":["https://nutch.apache.org"]}'

Response is the relative file directory path. Note, this is relative to where the Nutch server was started. It's also worth noting that any seed lists which are
created are persistent. That is to say they remain on disk even when nutch server is not running.

seedFiles/seed-1641959745623

Get seed lists

The endpoint facilitates retrieval of any seedlists which were created during the current server runtime./seed

As of Nutch 1.18 seed lists generated by previous server runtime sessions will not be available if the server is shutdown and restarted.

Database

This point provides access to information stored in the . CrawlDb

POST /db/crawldb with following
{ "type":"stats",
 "confId":"default",
 "crawlId":"crawl01",
 "args":{"someParam":"someValue"}
}

The different values for the type parameter are - dump, topN and url. Their corresponding arguments can be found .here

Response contains information from the .java class. For the above mentioned request, the JSON response would like like- CrawlDbReader

#
https://wiki.apache.org/nutch/bin/nutch%20readdb
#

 {
 "retry 0":"8350",
 "minScore":"0.0",
 "retry 1":"96",
 "status":{
 "3":{"count":"21","statusValue":"db_gone"},
 "2":{"count":"594","statusValue":"db_fetched"},
 "1":{"count":"7721","statusValue":"db_unfetched"},
 "5":{"count":"86","statusValue":"db_redir_perm"},
 "4":{"count":"24","statusValue":"db_redir_temp"}
 },
 "totalUrls":"8446",
 "maxScore":"0.528",
 "avgScore":"0.029593771"
 }

Note: If any other type than stats (like dump, topN, url) is used then the response will be a file (application-octet-stream).

More

Description of more API points coming soon.

	Nutch 1.X RESTAPI

