
AvalonFiveInterfaceProposal
(this page is part of the wiki materials for ; avalon main page in the wiki is )ApacheAvalon AvalonProjectPages

The  Interface ProposalAvalonFive
When we are separating code needed for compilation vs. code needed for running a system, it makes sense to separate the implementation from the 
interface definition. For this reason, I would like to set up Avalon5 so that the person developing for it will have a jar with a set of interfaces only. Not one 
implementation at all.

Why, you ask? The actual implementation of the lifecycle interfaces are many times container specific. In fact, some interfaces in Avalon 4 have no real 
meaning outside of a container such as  or Context. They represent what the container makes available to a component. Therefore the ServiceManager
implementation is highly container dependent. The fact that most of our containers do not use the "default" implementation in the JAR leads to support that 
oppinion. It also allows us to have focused "support" JARs.

Focusing Support

The Logger interface allows us to successfully abstract the Logger from the components that we write. The fact that one component was written against a 
container using  doesn't mean that it will be deployed that way. A side affect of the current Avalon 4 structure is that we currently need Log4J, ,LogKit LogKit
and JDK 1.4 Logging in the classpath to compile for a distribution. It would be better if the backing logger abstraction was added in a separate JAR 
complete with a  that the Container uses to find the exact Logger implementation necessary.LogManager

We might consider leaving the "braindead" versions of the loggers for debug purposes (i.e.  and ). They can be placed in a NullLogger ConsoleLogger
subpackage called debug or something.

It will also allow us to add support for certain environments. For example, we might want a specific contract for containers embedded in a Servlet context--i.
e. where the values come from for standard entries and accessing configuration values from the , etc. By providing a "ServletSupport" JAR, ServletContext
we can have the proper Logging formatters to glue into a Servlet environment as well as provide proper context support for that environment.

Pluggable Contracts

The concept of "pluggable contracts" is the process of having a well defined  of contracts that we can use in a given environment. We always need the set c
 or  contracts to act as a base. The contract sets that get superimposed on the base contracts are constant for the environment. If you onstant guaranteed

change the environment, you get a new set of contracts.

At first this might seem contradictory to providing support for cross-container components. However, when applied correctly, it helps containers provide a 
consistent environment to the component regardless of the environment.

Let's look at Cocoon for example. In a servlet environment, it has added some abstractions to keep the components isolated from the javax.servlet API so 
that it has the potential of working from the command line and the Servlet environment. The constant contracts are those guaranteed by the interface 
abstractions. The pluggable ones are those that map those constant contracts to the environment. The command line environment provides a consistent 
set of contracts so that the user knows how to customize it for their use. The same goes for the servlet environment. The pluggable contract sets are for 
how the container maps the environment to the component, not for additional functionality supplied to the component from the container.

By standardizing component contracts strictly from the viewpoint of the component (i.e. interfaces) we provide a standard in which the component author 
can feel confident that their component can work anywhere.

By standardizing component contracts strictly from the viewpoint of the environment to the container, we provide a standard mechanism that any Avalon 
user will be able to use to customize the environment. No extra coding is necessary, the container can simply use the JAR that provides support to the 
environment and everything is happy. those defined by the interfaces.

https://cwiki.apache.org/confluence/display/AVALON/ApacheAvalon
#
https://cwiki.apache.org/confluence/display/AVALON/AvalonFive
https://cwiki.apache.org/confluence/display/AVALON/ServiceManager
#
#
#
#
#
#

	AvalonFiveInterfaceProposal

