
JavaBeansVsComponents
http://jakarta.apache.org/avalon/images/header.gif

(this page is part of the wiki materials for ; avalon main page in the wiki is)ApacheAvalon AvalonProjectPages

JavaBeans Vs. Avalon Components
JavaBeans were Java's first foray into component based design. They trade the traditional separate interface for a set of design idioms. Idioms help to
define some rules and regulations for creating classes that are easy to tool, but they lack the ease of use of traditional components.

Avalon Components use the standard component design idiom of using a separate interface from the implementation. In a pure OOD arena, this is called
the "Bridge" pattern. In Component Based Design (CBD), it is merely how you define a component.

Avalon Components

Avalon Components follow two disign principles: Inversion of Control (IOC) and Separation of Concerns (SOC). The approach allows a component writer
to only use the information that they want to use. It also makes the components listeners for events that come from the container. Those events tell the
component that it is going through a particular stage in its lifecycle.

Avalon Components are very easy to work with because it has a defined lifecycle. You know when the component is in use, and when it is being created or
destroyed. Because we know when important events happen in a component's life, we can minimize the amount of thread contention that a component
has to manage. It also encourages components that can be run using several threads.

JavaBeans

JavaBeans were originally introduced as graphical components. They really shine in this role, and work very well. The design idioms that make up JavaBea
 have been applied to server side technologies like javax.sql.DataSource objects developed by database vendors. on the server side present ns JavaBeans

a number of design problems:

Concurrency problems due to changing configurations at runtime
Impossible to tell the when configuration is finishedJavaBean
Requires special event processing to serialize access or changes to the JavaBean
Use of introspection during configuration is slow (see). JavaBeansVsConfiguration

Advantages of Components over JavaBeans

Avalon components are designed for silent operation behind the scenes. In fact, they work best for the "Controller" portion of the Model-View-Controller
design pattern. are designed for vocal interaction with the user. They tend to favor either the "Model" portion of MVC, or the "View" portion.JavaBeans

It is easier to develop server side components using Avalon than the older standard.JavaBean
Avalon components are truly components. do not separate useage contracts from the implementation code.JavaBeans
Avalon components are more resilient to change due to the fact that component contracts are well understood, and are separate from the
implementation code.
Concurrency management for Avalon components is easier than for because there is a specific time when the component can be JavaBeans
configured--contrasted with which has no control. JavaBeans

Advantages of over ComponentsJavaBeans

Due to all the workarounds that have for their shortcommings, they have better tooling. tooling comes shipped with the JDK used to JavaBeans JavaBean
run the beans. The tooling is in the java.beans package, as well as the reflection package. The Swing API is full of you can us in your own JavaBeans
software. Some of the more mature aspects of has to do with the event structure associated with it.JavaBeans

It is easier to develop client side building blocks (they are not true components) that interrelate to each other.
The "Publish-Subscribe" design pattern used for event notification is advanced--and allows new software to participate in the interaction without
having to change the original code.
Property change notification is part of the more generic event notification, but it allows all parties monitoring the contents of a to react JavaBean
when it is altered.

Summary

JavaBeans are useful for modeling information in a very strongly typed manner. They are also useful for rendering that same information to the user of the
application and allowing the user to interact with the rest of the program. They fall short when you attempt to use them to manage the business logic of an
application--especially one that is designed to work with several clients simultaneously (client/server).

The event notification system built into the infrastructure allows you to design a very rich user experience. Avalon recently got outfitted with a JavaBeans
more powerful command processor and event routing system. The question remains whether we want to integrate that into Avalon proper. That would
allow us to have a SEDA like infrastructure for applications that demand highly scalable and massively concurrent communications.

We need to compare the more powerful features of to the more powerful features in Avalon to make a fair judgement.JavaBeans

http://jakarta.apache.org/avalon/images/header.gif
https://cwiki.apache.org/confluence/display/AVALON/ApacheAvalon
#
#
#
#
#
#
#
#
#
#
https://cwiki.apache.org/confluence/display/AVALON/JavaBeansVsConfiguration
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

	JavaBeansVsComponents

