ControllingModCache

How to control the caching of pages by mod_cache via HTTP headers

Apache httpd mod_cache is a wonderful tool to dramatically enhance the performance of your Cocoon-based site.
For this we assume that httpd is configured to act as a reverse proxy, with mod_cache enabled (see ApacheModProxy).
This page explains how to generate the required HTTP headers for mod_cache to store the pages in its front-end cache, with some example code.

Mod_cache uses the standard HTTP protocol definitions to determine if and how long to cache pages, see the official mod_cache and HTTP protocol
specs for more information.

HTTP headers

For mod_cache to put a page in cache, Cocoon must generate the following HTTP headers:

Last-Modified
Expires
Cache-Control
Content-length

L]

L]

L]

L]
Except for Content-length, these must be generated by your Cocoon application, for example using an Action as shown below.
To generate Content-length, you must currently create your own serializer, to set the buffering flag, as it is not yet configurable.
Simply inherit from HTMLSerializer (for example) and add the following method:

{{{public boolean shouldSetContentLength() {
return true;

}

1

Invalidating the cache

According to the HTTP caching specs, a POST on an URL must cause the cache to invalidate the page. This seems to work well with mod_cache, but |
haven't used this function extensively.

Example code

Here's some java code to set the required HTTP headers (except Content-Length, see above):

public static final String LAST_MOD HEADER = "Last- Mdified";
public static final String EXPlI RES_HEADER = "Expires";
public static final String CACHE_CONTROL_HEADER = "Cache-Control";

/** set headers so that the response is cached for nSeconds
* @aram|astMdified if null, now- 2 seconds is used */
public void setCacheHeader s(Response resp, Date | ast Modified,int cacheFor HowiaySeconds) {

final long lastMdTinme = (lastMdified == null ? SystemcurrentTimeMIlis() - 2000L : |astModified.
getTine());
final long expires = SystemcurrentTineMI1lis() + (cacheFor HowivaySeconds * 1000L);

resp. addDat eHeader (LAST_MOD_HEADER, | ast ModTi ne) ;

resp. addDat eHeader (EXPI RES_HEADER, expi r es) ;
resp. addHeader (CACHE_CONTROL_HEADER, " max- age="+ cacheFor Howivay Seconds) ;

And here's code for a Cocoon Action through a helper which contains the above code:

#

public Map act(Redirector redirector, SourceResolver resolver, Map objectMdel, String source, Paraneters
par anmet er s)
throws Exception {
/] paraneters tell us how long to cache
final int nSec = paraneters. getParaneterAslnteger("cache-validity-seconds", 0);
final String cachel nfo = paraneters. getParaneter("cache-info","NO CACHE- | NFO') ;
final String pagel nfo = paraneters. get Paranet er("page-info","NO PAGE-| NFO');

final HtpCacheHeadersHel per hel per = new Ht t pCacheHeader sHel per (cachel nf o, get Logger());
hel per. set CacheHeader s(Obj ect Model Hel per. get Response(obj ect Mbdel), nul | , nSec, pagel nfo) ;

/1 don't execute what's inside this action, it's just here to set headers
return null;

Then, you only need to use the Action like this in a sitemap to setup page caching:
{{{<map:act type="http-cache-headers">

<map:parameter name="cache-validity-seconds" value="30"/>

<map:parameter name="cache-info" value="cache-name-for-logging"/>
<map:parameter name="page-info" value="page-info-for-logging"/>

</map:act>

m

Setting the Content-Length

Unfortunately the "set content length" option of most serializers is not configurable, in some cases you'll need to extend the appropriate Serializer class just
to set the appropriate flag. This Needs Improvement (tm).

Here's an example for the HTMLSerializer class:
package your package;
i mport org.apache. cocoon. seri alization. HTM.Seri al i zer;

public class BufferingH m Serializer extends HTM.Serializer {
publ i c bool ean shoul dSet Cont ent Lengt h() {
return true;

}

How to control mod_cache w/o touching Cocoon?

It is easy to create two virtual hosts in apache configuration.

<Virtual Host 127.0.0. 1>
Server Name | ocal host
<Location /inmges>
Expi resActive On
Expi resDef aul t A3600
</ Locat i on>
<Location /user>
Expi resActive On
ExpiresDefault A0
</ Locat i on>
ProxyPass / http://1ocal host: 8080
ProxyPassReverse / http://1ocal host: 8080
</ Vi rt ual Host >

<Virtual Host 123.45.67.89>
Server Nane your donai n. com
CacheEnabl e di sk /i nages
CacheRoot /var/ww/ cache
ProxyPass / http://1 ocal host
ProxyPassReverse / http://|ocal host
</ Vi rt ual Host >

Update regarding mod_cache under Apache httpd 2.2.x

The mod_cache bundled with versions 2.0.x of Apache httpd does not work fine with the "Vary:" header : when you set this header, mod_cache will detect
it but will simply regenerate over and over again the cached content, resulting in zero cache efficiency.

The bug has been corrected in branch 2.2 of Apache, with version 2.2.0 being labeled as the new stable one (as of January 2006). However, a severe
regression bug was also introduced when using mod_cache in connection with mod_proxy ! The bugzilla entry is at http://issues.apache.org/bugzilla
/show_bug.cgi?id=38017 and the 2.2.0 patch is available at http://issues.apache.org/bugzilla/attachment.cgi?id=17342

So if you want to cache content responses based on http headers variations thanks to "Vary:", you have to run Cocoon under Apache 2.2 with this bugzilla
patch. Happy caching ‘&

http://issues.apache.org/bugzilla/show_bug.cgi?id=38017
http://issues.apache.org/bugzilla/show_bug.cgi?id=38017
http://issues.apache.org/bugzilla/attachment.cgi?id=17342

	ControllingModCache

