DataDebuggingTechnique

Overview

Often, in order to identify a problem in the transformation pipeline, it is useful to see the XML data that flows though the system at each stage in the
pipeline. At the development stage, it is easy to amend the sitemap to allow one to do just that by embedding conditional serializers between stages in the
pipeline.

Example

In this example, an action optionally fires, then an xsp page generates some data, then an XSL stylesheet generates a presentation-independent user
interface, which is then transformed by yet another XSL stylesheet to HTML. It could be a good practice pipeline, shortly expressed like that :

<map: pi pel i ne>
<map: mat ch pattern="show *">
<!-- Fetch the data -->
<map: generate type="serverpages" src="{1}.xsp"/>

<l-- Cenerate the U -->
<map:transformsrc="{1}-ui.xsl"/>
<l-- Prepare for presentation in an HTM. browser -->

<map: transform src="ui 2htm . xsl "/ >
<map:serialize type="htm"/>
</ map: mat ch>
</ map: pi pel i ne>

More steps in the pipeline

It is convenient to be able to intercept the data between all the stages in this process, as well as to intercept the browser's request even before the action
fires.

<map: pi pel i ne>
<map: nat ch pattern="show *">

<I--1f requested to serialize as request, don't even fetch the data -->
<map: mat ch pattern="as_req" type="request-paraneter">

<map: generate type="request"/>

<map:serialize mne-type="text/xm" type="xm"/>
</ map: mat ch>

<!-- Fetch the data -->
<map: generate type="serverpages" src="{1}.xsp"/>

<!-- If requested to serialize as data, don't generate the U -->

<map: match pattern="as_data" type="request-paraneter">
<map:serialize mne-type="text/xm" type="xm"/>

</ map: mat ch>

<!-- Cenerate the U -->
<map:transformsrc="{1}-ui.xsl"/>

<!-- If requested to serialize as U XM, don't convert to HTM -->
<map: match pattern="as_ui" type="request-paraneter">

<map:serialize mne-type="text/xm" type="xm"/>
</ map: mat ch>

<l-- Prepare for presentation in an HTM. browser -->
<map:transform src="ui 2htm . xsl "/ >

<map:serialize type="htm"/>
</ map: mat ch>
</ map: pi pel i ne>

Now, if you want to see the XML at any point in the pipeline, you simply add ?as_whatever=1 to the URL and the browser will show you the data at any
point in the process:

http://nysite/ show asset ?as_req=1
http://nysitel/ show asset ?as_dat a=1
http://nysitel/ show asset ?as_ui =1

| found that | used this technique very efficient for debugging data transformations.

— llyaAKriveshko

Using Views

A possibility is the use of View.

— ReinhardPoetz

See DebuggingWithViews for an alternate approach that does not modify pipeline logic

— ILinKuo

XSL

Usage from xsl debugging for html (Cocoonl, off line), add theese lines :

<xsl :tenpl at e nane="debug" natch="node()" node="debug">
<xsl : param nane="node" select="."/>
<textarea rows="5" col s="80" style="w dth: 100% >
<xsl : copy- of sel ect="$node"/>
</t ext area>
</ xsl :tenpl at e>

<xsl:apply-tenpl ates sel ect="/" node="debug"/>

For a nicer html view, Cocoon provide a simple-xml2html.xsl in different places (samples/common/style/xsl/html), but it's clearly the Internet Explorer look
and feel, with this big problem : lots of "+" and "-", making impossible to fastly copy paste some xml snippets. You can try the one attached, could be useful
in different places. You can use it for "ViewSource" pipelines (like upper), but also to show code in your pages.

— FredericGlorieux

Attachment: xml.xsl

https://cwiki.apache.org/confluence/display/COCOON/IlyaAKriveshko
https://cwiki.apache.org/confluence/display/COCOON/ReinhardPoetz
https://cwiki.apache.org/confluence/display/COCOON/DebuggingWithViews
https://cwiki.apache.org/confluence/display/COCOON/ILinKuo
https://cwiki.apache.org/confluence/display/COCOON/FredericGlorieux
https://cwiki.apache.org/confluence/download/attachments/118163882/xml.xsl?version=1&modificationDate=1559811759000&api=v2

	DataDebuggingTechnique

