LayoutTemplatePattern

Have you ever wondered how to create skins to use in Cocoon? This LayoutTemplate pattern for the sitemap allows you to do exactly that. While there are
certainly other ways to do this using xinclude or cinclude, I'm partial to this way of organizing skins myself, as | believe that it makes the switching out of
skins that much easier. ILinKuo

The essence of the LayoutTemplate pattern is that it uses an xslt stylesheet to replace selected elements in the layout template with corresponding
elements in the source xml. It'll be easier to explain after you've run it within your own Cocoon pipeline to see how it works.

The setup

My directory structure looks like this:

cocoon
- sitemap. xmap
- xsl
- insertlntoLayout Tenpl at e. xsl
- oxm
- dumylnsert. xm
- tenplates
- dummyTenpl at e. xni

and my sitemap match looks like this:

<map: mat ch pattern="test-| ayout Tenpl at ePattern">
<map: generate src="xm /dumylnsert.xm "/ >
<map:transform src="xsl/insertlntolLayout Tenpl ate. xsl ">
<map: par anet er nane="r el Tenpl at ePat h"
val ue="../tenpl at es/ durmyTenpl ate. xm "/ >
</ map: transforn>
<map: serialize type="xm"/>
</ map: mat ch>

From the sitemap, you specify a layout template to use (in this case, it's dummyTemplate.xml), and the stylesheet insertintoLayoutTemplate.xsl does the
job of looking up corresponding elements in your template from dummylnsert.xml.

The files

<l-- dummylnnsert.xm -->
<resul ts>
<page-title>Test Page for sitenap tenplate insert pattern</page-title>
<l ef t Nav>Apache Rul es</1| eft Nav>
<cont ent >
<hl>i nsert your content here!</hl>
</ content >
<f oot er >copyri ght: none</footer>
</resul ts>

In the above file, | have the page elements that | want to insert into the layout template

<!-- dummyTenpl ate. xm -->
<htm xm ns:c-insert="http://apache. org/cocoon/insert">
<head/ >
<body>
<c-insert:page-title>page-title goes here</c-insert:page-title>
<tabl e border="1">
<tr><td col span="2"><c-insert: page-banner/></td></tr>
<tr><td rowspan="2" wi dth="200"><c-insert:|eftNav/></td>
<td wi dt h="500"><c-insert:content/></td>
</tr>
<tr><td><c-insert:footer/></td></tr>
</ tabl e>
</ body>
</htm >

https://cwiki.apache.org/confluence/display/COCOON/ILinKuo

This layout template is a simple four cell table with a top banner, left navigation, central content area, and footer. I've defined a special namespace "c-
insert" to mark those elements that | want to have replaced. So, <c-insert:page-banner>, <c-insert:leftNav>, <c-insert:content>, and <c-insert:footer> will
get replaced by the corresponding top-level elements <page-banner> <leftNav> <content> and <footer> in my source document dummyInsert.xml.
However, since the source document doesn't contain a <page-banner> element, it will simply be removed.

The stylesheet that does all the work is:

<l-- insertlntoLayout Tenpl ate. xsl -->

<?xm version="1.0""?>

<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or nf
xm ns: c-insert="http://apache. org/ cocoon/insert"
xm ns: xht m ="http://ww. w3. org/ 1999/ xht m ">

<xsl : par am name="r el Tenpl at ePat h"/ >
<xsl:variabl e nane="l ayout Tenpl at e" sel ect ="docunent ($r el Tenpl at ePat h) "/ >

<l-- Selects the docunment in the pipeline. The top |level elenents
in this docunent will be inserted into the |ayout tenplate -->
<xsl:variabl e nane="resul ts" select="/"/>

<xsl:tenplate match="/">
<xsl:apply-tenpl ates sel ect ="$l ayout Tenpl ate/*"/>
</ xsl:tenpl at e>

<l-- look up content to be inserted using |ocal-name as key -->
<xsl:tenplate match="c-insert:*">

<xsl:copy-of select="$results/*/*[|ocal -nane()=l ocal -nane(current())]/node()"/>
</ xsl:tenpl at e>

<l-- identity transformused to copy all other elenments as is -->
<xsl:tenplate match="@| node()" priority="-1">

<xsl: copy><xsl: appl y-tenpl ates sel ect="@| node()"/></xsl : copy>
</ xsl :tenpl at e>

</ xsl : styl esheet >

Try it out!

Usage

For simplicity, this example shows how to insert static content into the template, but of course it's easy to use dynamically generated content as well, as
long as you make sure that by the time the xml gets to the stylesheet in the pipeline, all the top level elements are named appropriately.

Finally, to change your "skin", just change the value of the parameter passed into the stylesheet. In this example, the skin cannot be selected dynamically.
but I'll show in a follow-up how this can be done dynamically.

Debugging
A word of warning: Because of Cocoon's caching, if you implement this pattern and then tweak the template document, your changes will not show up
immediately. This is because Cocoon caches the calls it makes via the document() function. In order to see your changes, you'll have to either modify or
touch the insertintoLayoutTemplate.xsl file.
Feel free to modify this page and let me know what you think.
Note: A similar approach is described in Style-Free Stylesheets at cocooncenter.
— AndreasHartmann
Note: Thanks for pointing me to the cocooncenter article. | hadn't seen it before. It's essentially the same approach with three small differences:
® | pass in the template path as a parameter

® | use local-name() rather than @name for more robust matching

® The syntax for indicating which elements to be replaced is slightly different, but based on the same principle of using namespaces to distinguish
them from regular xhtml elements. --ILinKuo

http://www.cocooncenter.org/articles/stylefree.html
http://www.cocooncenter.org
https://cwiki.apache.org/confluence/display/COCOON/AndreasHartmann
https://cwiki.apache.org/confluence/display/COCOON/ILinKuo

	LayoutTemplatePattern

