
1

DOSGi DS Demo page

This page describes the CXF Distributed OSGi with Declarative Services demo.

The Declarative Services demo uses a DS implementation to create a remoted OSGi service from a DS
component. The consumer side uses DS to create a component that consumes the remote OSGi service. By
using Declarative Services, you don't need to write code to interact with the OSGi Service Registry. That's all
handled through injection which hugely simpliefies the code.
Declarative Services is similar to Spring-DM/OSGi Blueprint in that service dependencies are satisfied
through injection. There are a few differences as well. DS is lighter weight than Spring-DM but also has less
features. Declarative Services have been part of the OSGi specifications since version 4.0.

This demo can be used with any DOSGi distribution, in this document the single-bundle distribution is used
with the Equinox implementation of DS.

DEMO DESIGN

This demo is quite similar to the Spring-DM demo and the Greeter demo in structure. It consists of 3 bundles:

An interface bundle defining the Adder Service interface.
An Adder Service implementation bundle.
An Adder Service consumer bundle.

The service implementation and consumer bundle are built using DS.

The is as follows:Adder Service interface

http://svn.apache.org/repos/asf/cxf/dosgi/trunk/samples/ds/interface/src/main/java/org/apache/cxf/dosgi/samples/ds/AdderService.java

2

public interface AdderService {
 int add(int a, int b);
}

THE ADDER SERVICE IMPLEMENTATION

The service implementation providers a , which is simplistic implementation of the AdderService interface
instantiated as a DS component.

In the file the AdderServiceImpl is instantiated and registered with the OSGi OSGI-INF/component.xml

service registry with the distribution properties. These properties instruct. Distributed OSGi into making the
service available on .http://localhost:9090/adder

<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0" name="DS
Service Sample">
 <implementation class="org.apache.cxf.dosgi.samples.ds.impl.AdderServiceImpl"
/>

 <property name="service.exported.interfaces" value="*" />
 <property name="service.exported.configs" value="org.apache.cxf.ws" />
 <property name="org.apache.cxf.ws.address" value="http://localhost:9090
/adder" />

 <service>
 <provide interface="org.apache.cxf.dosgi.samples.ds.AdderService"/>
 </service>
</scr:component>

Note that the file needs to contain a special DS header that tells the system where to META-INF/MANIFEST.MF

find this file. In case of this demo, this header is added by the Maven build system. The header used by the
demo is:

 Service-Component: OSGI-INF/component.xml

http://svn.apache.org/repos/asf/cxf/dosgi/trunk/samples/ds/impl/src/main/java/org/apache/cxf/dosgi/samples/ds/impl/AdderServiceImpl.java
http://svn.apache.org/repos/asf/cxf/dosgi/trunk/samples/ds/impl/src/main/resources/OSGI-INF/component.xml
http://localhost:9090/adder

3

1.
2.
3.

So let's install the server side in Equinox, together with the Equinox DS implementation. You can do this from
the Equinox command line, but in this document I'll launch Equinox from within Eclipse (last tried with Eclipse
3.6).
I'm starting off by importing the Single Bundle Distribution as a binary project in Eclipse by going File ->

 and then select the directory that contains the single bundle distribution JAR Import | Plug-ins and Fragments
file. My workspace now looks like this:

Next I'll create an OSGi Framework launch configuration that includes DS. To do this

deselect the 'Target Platform' tickbox in the Eclipse Launch configuration screen
select org.eclipse.equinox.ds
hit the 'Add Required Bundles' button

4

Now run the OSGi container, you will get a setup like this:

osgi> ss

Framework is launched.

id State Bundle
0 ACTIVE org.eclipse.osgi_3.5.0.v20090520
1 ACTIVE org.eclipse.equinox.util_1.0.100.v20090520-1800
2 ACTIVE org.eclipse.osgi.services_3.2.0.v20090520-1800
3 ACTIVE cxf-dosgi-ri-singlebundle-distribution
4 ACTIVE org.eclipse.equinox.ds_1.1.0.v20090520-1800

Now I can install the DOSGi DS bundles in the OSGi container directly from the maven repository.

5

osgi> install http://repo1.maven.org/maven2/org/apache/cxf/dosgi/samples/cxf-
dosgi-ri-samples-ds-interface/1.2/cxf-dosgi-ri-samples-ds-interface-1.2.jar
Bundle id is 5

osgi> install http://repo1.maven.org/maven2/org/apache/cxf/dosgi/samples/cxf-
dosgi-ri-samples-ds-impl/1.2/cxf-dosgi-ri-samples-ds-impl-1.2.jar
Bundle id is 6

osgi> start 6
... log messages may appear ...

You can also import the maven projects of the DS demo into Eclipse, this would save you from
installing it with a URL as above. To do this, check out the CXF/DOSGi source from SVN (http://svn

), run and import all Eclipse projects .apache.org/repos/asf/cxf/dosgi/trunk mvn eclipse:eclipse

under the directory in Eclipse with .samples/ds File -> Import | Existing Projects into Workspace

http://svn.apache.org/repos/asf/cxf/dosgi/trunk
http://svn.apache.org/repos/asf/cxf/dosgi/trunk

6

At this point, the service should be available remotely, you can check this by obtaining the WSDL:

7

THE ADDER SERVICE CONSUMER

The service consumer is also created using DS. DS creates an AdderConsumer component which is injected
with a reference to the remote AdderService. Like in Spring, the injection is done by DS, which makes the
code nice and simple. When the injection is done, the start() method is called.

public class AdderConsumer {
 private AdderService adder;

 public void bindAdder(AdderService a) {
 adder = a;
 }

 public void unbindAdder(AdderService a) {
 adder = null;
 }

 public void start(ComponentContext cc) {
 System.out.println("Using adder service: 1 + 1 = " + adder.add(1, 1));
 }
}

The client side bundle contains an which drives the component creation and OSGI-INF/component.xml

injection:

<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0" activate="
start">
 <implementation class="org.apache.cxf.dosgi.samples.ds.consumer.
AdderConsumer"/>
 <reference interface="org.apache.cxf.dosgi.samples.ds.AdderService" name="
AdderService" cardinality="1..1" policy="dynamic" bind="bindAdder" unbind="
unbindAdder"/>
</scr:component>

As on the service provider side, the client side bundle needs to contain the DS header in the META-INF
:/MANIFEST.MF

 Service-Component: OSGI-INF/component.xml

As in the Greeter demo, the client side needs to be configured to know where the remote service actually is.
This is one in the file:OSGI-INF/remote-service/remote-services.xml

http://svn.apache.org/repos/asf/cxf/dosgi/trunk/samples/ds/client/src/main/resources/OSGI-INF/component.xml
http://svn.apache.org/repos/asf/cxf/dosgi/trunk/samples/ds/client/src/main/resources/OSGI-INF/remote-service/remote-services.xml

8

<endpoint-descriptions xmlns="http://www.osgi.org/xmlns/rsa/v1.0.0">
 <endpoint-description>
 <property name="objectClass">
 <array>
 <value>org.apache.cxf.dosgi.samples.ds.AdderService</value>
 </array>
 </property>
 <property name="endpoint.id">http://localhost:9090/adder</property>
 <property name="service.imported.configs">org.apache.cxf.ws</property>
 </endpoint-description>
</endpoint-descriptions>

Install and run the consumer side of the demo in a separate Equinox instance (tip: you can duplicate the
launch configuration used for the server side in the 'Run Configurations' dialog):

osgi> install http://repo1.maven.org/maven2/org/apache/cxf/dosgi/samples/cxf-
dosgi-ri-samples-ds-interface/1.2/cxf-dosgi-ri-samples-ds-interface-1.2.jar
Bundle id is 5

osgi> install http://repo1.maven.org/maven2/org/apache/cxf/dosgi/samples/cxf-
dosgi-ri-samples-ds-client/1.2/cxf-dosgi-ri-samples-ds-client-1.2.jar
Bundle id is 6

osgi> start 6
... log messages may appear, after a little while the following message
appears:
Using adder service: 1 + 1 = 2

The remote adder service has now been invoked. You will see the following line on the server side Equinox
window:

Adder service invoked: 1 + 1 = 2

Consumer Note

Some OSGi Declarative Services implementations don't explicitly register interest in the requested services
with the OSGi Framework. They rather user a generic Service Tracker or Service Listener to track all
available services. This doesn't provide the CXF-DOSGi implementation with the information about what
services the consumer is looking for through the ListenerHook and hence it can't register the remote service
on-the-fly. A simple workaround to this problem is to add an Activator to a bundle in the client-side framework
(this activator could be in any bundle) which registers an explicit ServiceTracker for the remote service the DS
component wants to be injected with. An example of such an .Activator can be found here

In the future a more elegant solution to this problem will hopefully be provided.

http://svn.apache.org/repos/asf/cxf/dosgi/trunk/samples/ds/client/src/main/java/org/apache/cxf/dosgi/samples/ds/consumer/Activator.java

	DOSGi DS Demo page

