This page describes the CXF Distributed OSGi with Declarative Services demo.

The Declarative Services demo uses a DS implementation to create a remoted OSGi service from a DS
component. The consumer side uses DS to create a component that consumes the remote OSGi service. By
using Declarative Services, you don't need to write code to interact with the OSGi Service Registry. That's all
handled through injection which hugely simpliefies the code.

Declarative Services is similar to Spring-DM/OSGi Blueprint in that service dependencies are satisfied
through injection. There are a few differences as well. DS is lighter weight than Spring-DM but also has less
features. Declarative Services have been part of the OSGi specifications since version 4.0.

This demo can be used with any DOSGi distribution, in this document the single-bundle distribution is used
with the Equinox implementation of DS.

DEMO DESIGN

This demo is quite similar to the Spring-DM demo and the Greeter demo in structure. It consists of 3 bundles:
* An interface bundle defining the Adder Service interface.
® An Adder Service implementation bundle.
® An Adder Service consumer bundle.

The service implementation and consumer bundle are built using DS.

P5EIConEnes

- r\\-\
invokes
"]

The Adder Service interface is as follows:


http://svn.apache.org/repos/asf/cxf/dosgi/trunk/samples/ds/interface/src/main/java/org/apache/cxf/dosgi/samples/ds/AdderService.java

public interface AdderService {
int add(int a, int b);

}

THE ADDER SERVICE IMPLEMENTATION

The service implementation providers a simplistic implementation of the AdderService interface, which is
instantiated as a DS component.

In the GSG - I NF/ conponent . xni file the AdderServicelmpl is instantiated and registered with the OSGi
service registry with the distribution properties. These properties instruct. Distributed OSGi into making the
service available on http://localhost:9090/adder.

<scr:conmponent xm ns:scr="http://ww. osgi.org/xmns/scr/vl. 1.0" name="DS
Servi ce Sanple">

<i mpl ementati on cl ass="org. apache. cxf. dosgi . sanpl es. ds. i npl . Adder Servi cel npl "
/>

<property nanme="service. exported.interfaces" value="*" />

<property nanme="service. exported. configs" val ue="org. apache. cxf.ws" />

<property nanme="org. apache. cxf.ws. address" val ue="http://1 ocal host: 9090
[ adder" />

<servi ce>
<provi de interface="org. apache. cxf. dosgi . sanpl es. ds. Adder Servi ce"/ >
</ servi ce>
</ scr: conponent >

Note that the META- | NF/ MANI FEST. M file needs to contain a special DS header that tells the system where to
find this file. In case of this demo, this header is added by the Maven build system. The header used by the
demo is:

Servi ce- Conponent: OSG - | NF/ conponent . xml


http://svn.apache.org/repos/asf/cxf/dosgi/trunk/samples/ds/impl/src/main/java/org/apache/cxf/dosgi/samples/ds/impl/AdderServiceImpl.java
http://svn.apache.org/repos/asf/cxf/dosgi/trunk/samples/ds/impl/src/main/resources/OSGI-INF/component.xml
http://localhost:9090/adder

So let's install the server side in Equinox, together with the Equinox DS implementation. You can do this from
the Equinox command line, but in this document I'll launch Equinox from within Eclipse (last tried with Eclipse
3.6).

I'm starting off by importing the Single Bundle Distribution as a binary project in Eclipse by going File ->
Import | Plug-ins and Fragments and then select the directory that contains the single bundle distribution JAR
file. My workspace now looks like this:

& Java - Eclipse SDK

Fle Edit Source Refactor MNavigate Search Project Run Window Help
fimi -0 (EEE- @y il -
|8 package Explorer & ] Hierarchy | 2% ¥ =0
= =2 cxf-dosgi-ri-singlebundie-distribution
=\ JRE System Library [jdk1.5.0_11]
= Plug-in Dependencies
- =) Referenced Libraries
& lib
F-(= META-INF
i =1 cxf-dosgi-ri-singlebundle-distribution-1. 1.jar

- B

-

2 problems 37 @ Javadoc [

0 ftems
Description
& | 5]
i cxf-dosgi-ri-singlebundle-distribution-1.1-...ar - cxf-dosgi-ri-singlebundle-distribution

Next I'll create an OSGi Framework launch configuration that includes DS. To do this

1. deselect the 'Target Platform' tickbox in the Eclipse Launch configuration screen
2. select org.eclipse.equinox.ds
3. hit the 'Add Required Bundles' button



~ Run Configurations

L

4@ Eclipse Application
- [E Java Applet
[ Java Application
;---Jll JUnit
. J% Junit Plug-in Test
=& O5GI Framework
& O5GI Framework with D¢

| & | |»
Filter matched 7 of 7 items

@

Create, manage, and run configurations

Create a configuration to launch the OSGi framework.

Name: | 0SGi Framework with DS

1$Bundies l‘“l Arguments |a—| Settlngs iTracmg ﬁEnwronment I

Framework: |Equin0x v Default Start level: £e Default

| type fiiter text
Bundles Star
= [] %] workspace
[V 4= cxf-dosgi-ri-singlebundie-distribution de
=[] #]| Target Platform
%= ...
L -
[¥] %= org.edipse.equinox.ds (1.1.0.v20090520-1800) de
[ 1% org.edlipse.equinox.frameworkadmin (1.0.100.v200!
s nm_Er.lime_mlJ]nox.framﬁwnrkadmin_Pnuin|m¢ f1.0.1
<

Include optional dependencies when computing required bundies
Add new workspace bundles to this launch configuration automatica

[ validate bundles automatically prior to launching

Now run the OSGi container, you will get a setup like this:

0sgi > ss

Framework is |aunched.

id State Bundl e

0 ACTI VE org. eclipse.osgi _3.5.0.v20090520

1 ACTI VE org. eclipse. equi nox.util_1.0.100.v20090520- 1800
2 ACTI VE org. eclipse.osgi.services_3.2.0.v20090520- 1800
3 ACTI VE cxf-dosgi-ri-singl ebundl e-di stribution

4 ACTI VE org. ecli pse. equi nox. ds_1. 1. 0. v20090520- 1800

Now | can install the DOSGi DS bundles in the OSGi container directly from the maven repository.



osgi > install http://repol. maven. or g/ maven2/ or g/ apache/ cxf/ dosgi / sanpl es/ cxf -
dosgi -ri-sanpl es-ds-interface/ 1.2/ cxf-dosgi-ri-sanples-ds-interface-1.2.jar
Bundle id is 5

osgi > install http://repol. maven. or g/ maven2/ or g/ apache/ cxf/ dosgi / sanpl es/ cxf -
dosgi -ri-sanpl es-ds-inpl/1.2/cxf-dosgi-ri-sanples-ds-inpl-1.2.jar
Bundle id is 6

osgi > start 6
| og messages may appear

You can also import the maven projects of the DS demo into Eclipse, this would save you from
installing it with a URL as above. To do this, check out the CXF/DOSGi source from SVN (http://svn
.apache.org/repos/asf/cxf/dosgi/trunk), run mvn ecl i pse: ecl i pse and import all Eclipse projects
under the sanpl es/ ds directory in Eclipse with File -> Import | Existing Projects into Workspace.


http://svn.apache.org/repos/asf/cxf/dosgi/trunk
http://svn.apache.org/repos/asf/cxf/dosgi/trunk

At this point, the service should be available remotely, you can check this by obtaining the WSDL:

) Mozilla Firefox
File Edit Vew History Bookmarks Tools Help

o ey

@ - @ ¥ 4 ([O]nttp:/fiocanost:9090/adderawsdl 13

— <wsdl:defimifions name="AdderService"
targetNamespace="http://ds_samples dosgi_cxf apache org™=

—<wsdl:tyvpes>
—<xsd:schema attributeFormDefanlt="unqualified" elementFormDef:

targetNamespace="http:'ds_ samples dosgi.cxf apache org">
<xsd:element name="add" type="tns:add" />
—<xsd:complexTvpe name="add">
—<xsd:sequence>
<xsd:element name="arg)" type="xsd:int" >
<xsd:element name="argl" tvpe="xsdint" />
</xsd:sequence>
</xsd:complexTvpe>
<xsd:element name="addResponse" type="tns:addResponse"/>
— <xsd:complexTvpe name="addR esponse"=>
—<xsd:sequence>
<xsd:element name="return" tvpe="xsdint" />
</xsd:sequence>
</xsd:complexTvpe>
</xsd:schema>
<wsdl:tvpes>
—<wsdl:message name="addResponse">
<wsdl:part element="tns:addF.esponse” name="parameters"> </wsdlz]
</wsdl:message>
—<wsdl:message name="add">

s & Highli .DM

*  Find:
Done




THE ADDER SERVICE CONSUMER

The service consumer is also created using DS. DS creates an AdderConsumer component which is injected
with a reference to the remote AdderService. Like in Spring, the injection is done by DS, which makes the
code nice and simple. When the injection is done, the start() method is called.

public class Adder Consuner {
private Adder Servi ce adder;

public void bi ndAdder (Adder Service a) {
adder = a;

}

public void unbi ndAdder (Adder Service a) {
adder = nul | ;

}

public void start(Conponent Context cc) {
Systemout.println("Using adder service: 1 + 1 =" + adder.add(1, 1));
}

The client side bundle contains an OSG - | NF/ conponent . xmi which drives the component creation and
injection:

<scr:conmponent xml ns:scr="http://ww. osgi.org/xmns/scr/v1l.1.0" activate="
start">

<i mpl ement ati on cl ass="org. apache. cxf. dosgi . sanpl es. ds. consuner.
Adder Consuner "/ >

<reference interface="org. apache. cxf. dosgi . sanpl es. ds. Adder Servi ce" name="
Adder Service" cardinality="1..1" policy="dynam c" bi nd="bi ndAdder" unbi nd="
unbi ndAdder "/ >
</ scr: conponent >

As on the service provider side, the client side bundle needs to contain the DS header in the META- | NF
/ MANI FEST. MF:

Servi ce- Conponent: OSG - | NF/ conponent . xml

As in the Greeter demo, the client side needs to be configured to know where the remote service actually is.
This is one in the OSG - | NF/ r enot e- ser vi ce/ renot e- servi ces. xm file:


http://svn.apache.org/repos/asf/cxf/dosgi/trunk/samples/ds/client/src/main/resources/OSGI-INF/component.xml
http://svn.apache.org/repos/asf/cxf/dosgi/trunk/samples/ds/client/src/main/resources/OSGI-INF/remote-service/remote-services.xml

<endpoi nt -descri ptions xm ns="http://ww. osgi.org/xm ns/rsa/v1.0.0">
<endpoi nt - descri pti on>
<property nanme="objectC ass" >
<array>
<val ue>or g. apache. cxf. dosgi . sanpl es. ds. Adder Ser vi ce</ val ue>
</ array>
</ property>
<property name="endpoint.id">http://]ocal host: 9090/ adder </ property>
<property name="service.inported. configs">org. apache. cxf.ws</property>
</ endpoi nt - descri pti on>
</ endpoi nt - descri pti ons>

Install and run the consumer side of the demo in a separate Equinox instance (tip: you can duplicate the
launch configuration used for the server side in the 'Run Configurations' dialog):

osgi > install http://repol. maven. or g/ maven2/ or g/ apache/ cxf/ dosgi / sanpl es/ cxf -
dosgi -ri-sanpl es-ds-interface/ 1.2/ cxf-dosgi-ri-sanples-ds-interface-1.2.jar
Bundle id is 5

osgi > install http://repol. maven. or g/ maven2/ or g/ apache/ cxf/ dosgi / sanpl es/ cxf -
dosgi -ri-sanpl es-ds-client/1.2/cxf-dosgi-ri-sanples-ds-client-1.2.jar
Bundle id is 6

osgi > start 6

| og messages may appear, after a little while the follow ng nmessage
appears:
Usi ng adder service: 1 + 1 =2

The remote adder service has now been invoked. You will see the following line on the server side Equinox
window:

Adder service invoked: 1 + 1 =2

Consumer Note

Some OSGi Declarative Services implementations don't explicitly register interest in the requested services
with the OSGi Framework. They rather user a generic Service Tracker or Service Listener to track all
available services. This doesn't provide the CXF-DOSGi implementation with the information about what
services the consumer is looking for through the ListenerHook and hence it can't register the remote service
on-the-fly. A simple workaround to this problem is to add an Activator to a bundle in the client-side framework
(this activator could be in any bundle) which registers an explicit ServiceTracker for the remote service the DS
component wants to be injected with. An example of such an Activator can be found here.

In the future a more elegant solution to this problem will hopefully be provided.


http://svn.apache.org/repos/asf/cxf/dosgi/trunk/samples/ds/client/src/main/java/org/apache/cxf/dosgi/samples/ds/consumer/Activator.java

	DOSGi DS Demo page

