
BayesFeedbackViaForwarding
Feeding back mail for the Bayesian learner via forwarded mail
This is a form of .SiteWideBayesFeedback

For MUAs (Like Netscape/Mozilla) that do a good job with keeping orignal headers intact, (almost) all you need to do is forward the email to the feedback
account and strip off the header added by the forward (provided that you forward inline. I'll try to update bayes_fixup.pl for forwarding as attachment at a
later date). This can be done by calling a filter from the ~/.procmailrc file of the learner accounts. (I apologize for putting these scripts in the Wiki, but I have
no publically accessable location to post them, If someone who does has that capability, and could just replace them with links, I'd appreciate it)

I am not sure how sa-learn will interpret a signature when you forward email inline, so you should probably delete your .sig before forwarding the message.

I call spamc from /etc/procmailrc, but I make sure that it does't filter mail to is_spam and not_spam

/etc/procmailrc

 # Don't filter mail to is_spam and not_spam
 #
 # Since we are running sitewide, it could cause a serious bottleneck if
 # we were to use a lockfile here. instead, we limit spamd to 20 child
 # processes in /etc/sysconfig/spamassassin
 #
 #:0fw: spamassassin.lock
 :0fw
 * !^To.*spam@mycompany.com
 * < 256000
 | spamc

~is_spam/.procmailc (I also have a ~not_spam/.procmailrc that is identical)

 # filter spam feedback
 :0fw: bayes_fixup.lock
 * < 256000
 | /usr/local/adm/bin/bayes_fixup.pl

bayes_fixup.pl is:

#!/usr/bin/perl
#
This filter is designed to pull off the forwarding headers for mail
forwarded to is_spam or not_spam from an MUA that includes all
headers. (as opposed to outlook, which does not include all
headers, and thus must be resent instaed of forwarded.)
#
In a forwarded message from Netscape/Mozilla, you will have:
#
From ...
...
From: (matches envelope from)
...
one or more blank lines
-------- Original Message --------
From: (a date code for the forwading MUA)
The original Headers
#
You will not have:
Sender:
#
Not sure if the Netscape stuff is valid for HTML mode.
#
Brian R. Jones 01/30/04 scumpuppy_@_earthlink_._net
#
use strict;

my ($count,$endheader,$sender,$unknown);
my $fwdmarker = "-------- Original Message --------";

https://cwiki.apache.org/confluence/display/SPAMASSASSIN/SiteWideBayesFeedback

my @message = <STDIN>;

#
Determine if sender is Outlook, Netscape/Mozilla or unknown.
If Netscape, set a marker for the end of the headers that are added
by the forwarding.
#
for($count = 0, $endheader = 0, $sender = 0, $unknown = 0; ; $count++) {
 $_ = $message[$count];
 /^Sender:/o and last; # It's a resent message from Outlook, skip
 /^\s*$/o and do { # end of headers marked with one or more
 $endheader = 1; # blank lines
 next;
 };
 next unless $endheader;
 /^$fwdmarker/o or $unknown = 1;
 last;
}
#
If it's Netscape, delete the forwarding header, and clean up the
original. I'm also converting the 'From:' to the 'Envelope From'
which may not be legitimate. It may be better to use the forward
header 'Envelope From'. Unfortunately, there is no way to capture
the original 'Envelope From'. :(
#
if ($endheader && ! $unknown) { # forwarded from known mailer
 splice(@message, 0 , ++$count);
 $message[0] =~ s/^From:/From/;
 for (@message) { # Stupid Netscape collapse continuation lines,
 # so we need to put `em back in case sa-learn
 # doesn't understand `em.
 /^[\w\-]+:/ and next; # Valid header
 /^\t/ and next; # Valid Continuation line
 /^From/ and next; # Newly created Envelope From
 /^\s*$/ and last; # End of Headers
 $_ = "\t" . $_; # Malformed continuation line. Add tab.
 }
} elsif ($unknown) { # unknown, toss it.
 exit 1;
}
print @message;

So all of the above handles delivery of a nearly (except for the 'envelope From') untainted message to the spam (is_spam) and ham (not_spam) accounts
on the server. Note that these messages live where sendmail sends them. Next you need to run sa-learn on them, and sa-learn requires they first be split
into individual messages. To do that, I call another script (learn_spam.pl) from cron. Since I'm using a Redhat Linux box I do it like this:

/etc/cron.daily/learnspam (When you are testing, remove the redirect to /dev/null and cron will automatically email you (assuming you are root) the output
from learn_spam.pl):

#!/bin/bash
#
run sa-learn on mail sent to the is_spam and not_spam accounts
#
/usr/local/adm/sbin/learn_spam.pl > /dev/null

/usr/local/adm/sbin/learn_spam.pl:

#!/usr/bin/perl -I/usr/local/lib
#
run sa-learn on is_spam and not_spam to update spamassassin
#
brj 01/27/04

use strict;
use Cwd;
require "splitmail.pl";

my $spamfile = "/var/mail/is_spam";
my $hamfile = "/var/mail/not_spam";
my $tmpdir = "/var/tmp/split";

#my $learn_spam = "sa-learn --spam --showdots --dir $tmpdir";
#my $learn_ham = "sa-learn --ham --showdots --dir $tmpdir";

my $learn_spam = "sa-learn --spam --dir $tmpdir";
my $learn_ham = "sa-learn --ham --dir $tmpdir";

my $startdir = cwd();

sub init {
 if (! -d $tmpdir) {
 mkdir $tmpdir;
 } else {
 if (chdir($tmpdir)) {
 unlink <*>;
 }
 chdir($startdir);
 }
}

sub learn {
 my $infile = shift;
 my $command = shift;
 if (-r $infile) {
 splitmail($infile,$tmpdir);
 system("$command");
 if (chdir($tmpdir)) {
 unlink <*>;
 }
 chdir($startdir);
 }
}

sub cleanup {
 unlink $spamfile, $hamfile;
 rmdir $tmpdir;
}

init();
learn($spamfile, $learn_spam);
learn($hamfile, $learn_ham);
cleanup();

Since I have several other apps that also require splitting a mail file I wrote splitmail (or maybe I borrowed it from someone else, I'm not sure) as a library.

/usr/local/lib/splitmail.pl:

#!/usr/bin/perl
#
splits a file containing multiple messages into individual files
#
use strict;

sub splitmail {
 my $infile = shift;
 my $outdir = shift;
 my $count = 0;

 open(INFILE, "< $infile") or die "Can't open $infile: $!\n";

 while(<INFILE>) {
 /^From / and do {
 close(OUTFILE) if $count;
 open(OUTFILE, "> $outdir/$count") or die "Can't open $outdir/$count: $!\n";
 $count++;
 };
 print OUTFILE $_;
 }
 close(OUTFILE);
}

1;

Alternately, you can use this wrapper for sa-learn and call it from a .qmail file for on-the-fly split-and-learn-via-forward.

/usr/bin/learn_spam:

#!/usr/bin/perl
#
run sa-learn on STDIN ... easy to use with .qmail files:
#
.qmail-spamtrap:
| learn_spam --spam --username=alias | cat - > /dev/null
.qmail-qqqhamreport:
| learn_spam --ham --username=alias | cat - > /dev/null
#
3/16/2005 -- cgg007 at yahoo.com
#

use strict;

sub learn {
 my $message = shift;
 my $pipe = shift;
 open LEARN, $pipe;
 print LEARN $message;
 close LEARN;
}

my $learn_cmd = "| bayes_fixup.pl | sa-learn " . join(" ",@ARGV);
my $count = 0;
my $message = '';

while (<STDIN>) {

 /^From/ and do {
 if ($count) {
 learn($message,$learn_cmd);
 $message = '';
 }
 $count++;
 };

 $message .= $_;

}

learn($message,$learn_cmd);

	BayesFeedbackViaForwarding

