
HierarchicalFaceting
Approaches to Hierarchical Facets in Solr
This document contains various suggestions and solutions for dealing with "Hierarchical Facets" - a concept which can mean differnet things to differnet
people depending on their data.

Approaches to Hierarchical Facets in Solr
'facet.prefix' Based Drill Down

Flattened Data “breadcrumbs”
Indexed Terms

Terms Containing Another Term in the Beginning
Initial Query
Drill Down

PathHierarchyTokenizerFactory
Flattened Data
Output Tokens
Initial Query

Pivot Facets
Flattened Data “breadcrumbs”
Indexed Terms

Strict hierarchical facets
Multipath hierarchical faceting
Faceting Module

'facet.prefix' Based Drill Down
 Solr1.2

Transcribed (with slight edits) from (starting ~28min in)Mastering the Power of Faceted Search by Chris Hostetter of Lucid Imagination

For simple categories, works fine as-is. However, categorization schemes are frequently organized in a hierarchically-structured scheme, and facet.field
the user experience for interacting with that taxonomy involves drill down, starting at the top (more general) and whittling the way down (more specific).

This is a basic approach that works well for most use cases and takes advantage of basic Solr faceting parameters by encoding the facet terms at index
time.

Flattened Data “breadcrumbs”

Doc#1: NonFic > Law
Doc#2: NonFic > Sci
Doc#3: NonFic > Hist, NonFic > Sci > Phys

In this example, we have documents associated with multiple categories, like Doc#3. We also have documents that are mapped to internal nodes, like
Doc#2.

You must perform some index time processing on this flattened data in order to create the tokens needed for a facet.prefix approach. When we index the
data we create specially formatted terms that encode the depth information for each node that appears as part of the path, and include the hierarchy
separated by a common separator (“depth/first level term/second level term/etc”). We also add additional terms for every ancestors in the original data.

Indexed Terms

Doc#1: 0/NonFic, 1/NonFic/Law
Doc#2: 0/NonFic, 1/NonFic/Sci
Doc#3: 0/NonFic, 1/NonFic/Hist,
 0/NonFic, 1/NonFic/Sci, 2/NonFic/Sci/Phys

Terms Containing Another Term in the Beginning

In case you are indexing terms that may have another term in the beginning, adding a separator at the end of each term helps distinquish these terms:

Doc#1: 0/Books/, 1/Books/Book/
Doc#2: 0/Books/, 1/Books/BookPart/

https://cwiki.apache.org/confluence/display/SOLR/Solr1.2
http://www.lucidimagination.com/why-lucid/webinars/mastering-power-faceted-search

Then in the query always include a trailing slash, e.g. "facet.prefix = 1/Books/Book/" to avoid matching "1/Books/BookParts".

Initial Query

With this type of index data, we can then go on and query this to get a drill-down. Initially, we can say we want to facet on the category field with the facet.
 “1/NonFic”: things that are children of at a depth of 1.prefix NonFic

facet.field = category
facet.prefix = 1/NonFic
facet.mincount = 1

<result numFound=”3” ...
<lst name=”facet_fields”>
 <lst name=”category”>
 <int name=”1/NonFic/Sci”>2</int>
 <int name=”1/NonFic/Hist”>1</int>
 <int name=”1/NonFic/Law”>1</int>

Drill Down

If we drill down into /Sci, we just add the (filter query) as normal and tweak the from the children 1/NonFic to the children of 2/NonFicNonFic fq facet.prefix
/Sci

fq = {!raw f=category}1/NonFic/Sci
facet.field = category
facet.prefix = 2/NonFic/Sci
facet.mincount = 1

<result numFound=”2” ...
<lst name=”facet_fields”>
 <lst name=”category”>
 <int name=”2/NonFic/Sci/Phys”>1</int>

We’ve used the depth prefix that lets us look one level deep, but by tweaking the encoding, alternative user experiences can be created.

PathHierarchyTokenizerFactory
 Solr 3.1

The is designed to output file path hierarchies as synonyms, but can also be used in other simple hierarchies.solr.PathHierarchyTokenizerFactory

Flattened Data

Doc #1: /usr/local/apache
Doc #2: /etc/apache2
Doc #3: /etc/apache2/conf.d

Output Tokens

Doc #1: /usr, /usr/local, /usr/local/apache
Doc #2: /etc, /etc/apache2
Doc #3: /etc, /etc/apache2, /etc/apache2/conf.d

Initial Query

#
#
#
#
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#solr.PathHierarchyTokenizerFactory

facet.field = category
facet.mincount = 1

<result numFound=”3” ...
<lst name=”facet_fields”>
 <lst name=”category”>
 <int name=”/etc”>2</int>
 <int name=”/etc/apache2”>2</int>
 <int name=”/etc/apache2/conf.d”>1</int>
 <int name=”/usr”>1</int>
 <int name=”/usr/local”>1</int>
 <int name=”/usr/local/apache”>1</int>

Unlike the approach, it isn’t as easy to constrain the depth of the taxonomies, but for small numbers of terms this may be a good approach.facet.prefix

Pivot Facets
] [SOLR-792 https://issues.apache.org/jira/browse/SOLR-792

Pivot facets are query time constructs that allow arbitrary facet results, but they should be used wisely to avoid performance bottlenecks.

You can think of it as "Decision Tree Faceting" which tells you in advance what the "next" set of facet results would be for a field if you apply a constraint
from the current facet results, e.g. "for facet A, the constraints/counts are X/N, Y/M,” and if you were to constrain A by X, then the constraint counts for B
would be S/P, T/Q, etc. Another way to think of it is each field is treated as a vector containing the constraint counts for that field, and taking a "cross
product" to produce an N-dimensional matrix showing the counts for each permutation.

This feature can be easily applied to hierarchical facets in some cases, particularly those where a particular document only appears at one point in the
taxonomy.

Flattened Data “breadcrumbs”

Doc#1: NonFic > Law
Doc#2: NonFic > Sci
Doc#3: NonFic > Sci > Phys

At index time, we split the data into a separate field for each level of the hierarchy.

Indexed Terms

Doc#1: category_level0: NonFic; category_level1: Law
Doc#2: category_level0: NonFic; category_level1: Sci
Doc#3: category_level0: NonFic; category_level1: Sci, category_level2:Phys

When querying Solr, we specify the facet.pivot parameter, which is a comma-separated list of fields to “pivot” on:

facet.pivot = category_level0,category_level1,category_level2

#
https://issues.apache.org/jira/browse/SOLR-792
http://wiki.apache.org/solr/SimpleFacetParameters#Pivot_.28ie_Decision_Tree.29_Faceting

<result numFound=”3” ...
<lst name=”facet_pivot”>
 <arr name=”category_level0,category_level1,category_level2”>
 <lst>
 <str name=”field”>category_level0</str>
 <str name=”value”>NonFic</str>
 <int name=”count”>3</int>
 <arr name=”pivot”>
 <lst>
 <str name=”field”>category_level1</str>
 <str name=”value”>Law</str>
 <int name=”count”>1</int>
 </lst>
 <lst>
 <str name=”field”>category_level1</str>
 <str name=”value”>Sci</str>
 <int name=”count”>2</int>
 <arr name=”pivot”>
 <lst>
 <str name=”field”>category_level2</str>
 <str name=”value”>Phys</str>
 <int name=”count”>1</int>
 </lst>
 </arr>
 </lst>
 </arr>

Strict hierarchical facets
SOLR-64

Strict Facet Hierarchies:

a response format that can more efficiently encapsulate hierarchies
maybe format flexible enough to encompass other hierarchies (non-tree, defined via solrconfig.xml, etc)
strict hierarchy field faceting, with a single field value per document containing all the ordered constraints (a path)
ability to select depth to return to the client
perhaps an ability to select a variable depth based on the number of items selected at that node
expand node if count > 100.... or maybe expand node if count > 10% of hits

Multipath hierarchical faceting
SOLR-2412

Hierarchical faceting with slow startup, low memory overhead and fast response. Distinguishing features as compared to and areSOLR-64 SOLR-792

Multiple paths per document
Query-time analysis of the facet-field; no special requirements for indexing besides retaining separator characters in the terms used for faceting
Optional custom sorting of tag values
Recursive counting of references to tags at all levels of the output

This is a shell around , making it work with the Solr API. The underlying principle is to reference terms by their ordinals and create an index LUCENE-2369
wide documents to tags map, augmented with a compressed representation of hierarchical levels.

Faceting Module
https://issues.apache.org/jira/browse/LUCENE-3079

TBD (To Be Documented)

https://issues.apache.org/jira/browse/SOLR-64
https://issues.apache.org/jira/browse/SOLR-2412
https://issues.apache.org/jira/browse/SOLR-64
https://issues.apache.org/jira/browse/SOLR-792
https://issues.apache.org/jira/browse/LUCENE-2369
https://issues.apache.org/jira/browse/LUCENE-3079

	HierarchicalFaceting

