
WritingYarnApps
Hadoop Next Generation - Writing YARN ApplicationsMapReduce

Hadoop MapReduce Next Generation - Writing YARN Applications
Purpose
Concepts and Flow
Interfaces
Writing a Simple Yarn Application

Writing a simple Client
Writing an ApplicationMaster

FAQ
How can I distribute my application's jars to all of the nodes in the YARN cluster that need it?
How do I get the ApplicationMaster's ApplicationAttemptId?
My container is being killed by the Node Manager
How can my ApplicationMaster kill a container? Releasing it via AMRMProtocol#allocate does not seem to work.

Useful Links

Purpose
This document describes, at a high-level, the way to implement new Applications for YARN.

Concepts and Flow
The general concept is that an 'Application Submission Client' submits an 'Application' to the YARN Resource Manager. The client communicates with the

 using the 'ClientRMProtocol' to first acquire a new 'ApplicationId' if needed via ClientRMProtocol#getNewApplication and then submit ResourceManager
the 'Application' to be run via ClientRMProtocol#submitApplication. As part of the ClientRMProtocol#submitApplication call, the client needs to provide
sufficient information to the to 'launch' the application's first container i.e. the . You need to provide information such ResourceManager ApplicationMaster
as the details about the local files/jars that need to be available for your application to run, the actual command that needs to be executed (with the
necessary command line arguments), any Unix environment settings (optional), etc. Effectively, you need to describe the Unix process(es) that needs to
be launched for your .ApplicationMaster

The YARN will then launch the (as specified) on an allocated container. The is then expected to ResourceManager ApplicationMaster ApplicationMaster
communicate with the using the 'AMRMProtocol'. Firstly, the needs to register itself with the . To ResourceManager ApplicationMaster ResourceManager
complete the task assigned to it, the can then request for and receive containers via AMRMProtocol#allocate. After a container is ApplicationMaster
allocated to it, the communicates with the using #startContainer to launch the container for its task. As ApplicationMaster NodeManager ContainerManager
part of launching this container, the has to specify the which, similar to the , has ApplicationMaster ContainerLaunchContext ApplicationSubmissionContext
the launch information such as command line specification, environment, etc. Once the task is completed, the has to signal the ApplicationMaster Resource

 of its completion via the AMRMProtocol#finishApplicationMaster.Manager

Meanwhile, the client can monitor the application's status by querying the or by directly querying the if it supports ResourceManager ApplicationMaster
such a service. If needed, it can also kill the application via ClientRMProtocol#forceKillApplication.

Interfaces
The interfaces you'd most like be concerned with are:

ClientRMProtocol - Client\<--\>ResourceManager\
The protocol for a client that wishes to communicate with the to launch a new application (i.e. the), check on ResourceManager ApplicationMaster
the status of the application or kill the application. For example, a job-client (a job launching program from the gateway) would use this protocol.
AMRMProtocol - \<--\>ResourceManager\ApplicationMaster
The protocol used by the to register/unregister itself to/from the as well as to request for resources from the ApplicationMaster ResourceManager
Scheduler to complete its tasks.
ContainerManager - \<--\>NodeManager\ApplicationMaster
The protocol used by the to talk to the to start/stop containers and get status updates on the containers if ApplicationMaster NodeManager
needed.

Writing a Simple Yarn Application

Writing a simple Client

The first step that a client needs to do is to connect to the or to be more specific, the (AsM) interface of ResourceManager ApplicationsManager
the . ResourceManager

https://cwiki.apache.org/confluence/display/HADOOP2/MapReduce
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

 ClientRMProtocol applicationsManager;
 YarnConfiguration yarnConf = new YarnConfiguration(conf);
 InetSocketAddress rmAddress =
 NetUtils.createSocketAddr(yarnConf.get(
 YarnConfiguration.RM_ADDRESS,
 YarnConfiguration.DEFAULT_RM_ADDRESS));
 LOG.info("Connecting to ResourceManager at " + rmAddress);
 configuration appsManagerServerConf = new Configuration(conf);
 appsManagerServerConf.setClass(
 YarnConfiguration.YARN_SECURITY_INFO,
 ClientRMSecurityInfo.class, SecurityInfo.class);
 applicationsManager = ((ClientRMProtocol) rpc.getProxy(
 ClientRMProtocol.class, rmAddress, appsManagerServerConf));

Once a handle is obtained to the ASM, the client needs to request the for a new . ResourceManager ApplicationId

 GetNewApplicationRequest request =
 Records.newRecord(GetNewApplicationRequest.class);
 GetNewApplicationResponse response =
 applicationsManager.getNewApplication(request);
 LOG.info("Got new ApplicationId=" + response.getApplicationId());

The response from the ASM for a new application also contains information about the cluster such as the minimum/maximum resource
capabilities of the cluster. This is required so that to ensure that you can correctly set the specifications of the container in which the ApplicationMa

 would be launched. Please refer to for more details. ster GetNewApplicationResponse
The main crux of a client is to setup the which defines all the information needed by the to ApplicationSubmissionContext ResourceManager
launch the . A client needs to set the following into the context:ApplicationMaster

Application Info: id, name
Queue, Priority info: Queue to which the application will be submitted, the priority to be assigned for the application.
User: The user submitting the application
ContainerLaunchContext: The information defining the container in which the will be launched and run. The ApplicationMaster ContainerL

, as mentioned previously, defines all the required information needed to run the such as the local aunchContext ApplicationMaster
resources (binaries, jars, files etc.), security tokens, environment settings (CLASSPATH etc.) and the command to be executed.

 // Create a new ApplicationSubmissionContext
 ApplicationSubmissionContext appContext =
 Records.newRecord(ApplicationSubmissionContext.class);
 // set the ApplicationId
 appContext.setApplicationId(appId);
 // set the application name
 appContext.setApplicationName(appName);

 // Create a new container launch context for the AM's container
 ContainerLaunchContext amContainer =
 Records.newRecord(ContainerLaunchContext.class);

 // Define the local resources required
 Map<String, LocalResource> localResources =
 new HashMap<String, LocalResource>();
 // Lets assume the jar we need for our ApplicationMaster is available in
 // HDFS at a certain known path to us and we want to make it available to
 // the ApplicationMaster in the launched container
 Path jarPath; // <- known path to jar file
 FileStatus jarStatus = fs.getFileStatus(jarPath);
 LocalResource amJarRsrc = Records.newRecord(LocalResource.class);
 // Set the type of resource - file or archive
 // archives are untarred at the destination by the framework
 amJarRsrc.setType(LocalResourceType.FILE);
 // Set visibility of the resource
 // Setting to most private option i.e. this file will only
 // be visible to this instance of the running application
 amJarRsrc.setVisibility(LocalResourceVisibility.APPLICATION);
 // Set the location of resource to be copied over into the
 // working directory
 amJarRsrc.setResource(ConverterUtils.getYarnUrlFromPath(jarPath));

#
#
#
#
#
#
#
#
#
#
#
#
#

 // Set timestamp and length of file so that the framework
 // can do basic sanity checks for the local resource
 // after it has been copied over to ensure it is the same
 // resource the client intended to use with the application
 amJarRsrc.setTimestamp(jarStatus.getModificationTime());
 amJarRsrc.setSize(jarStatus.getLen());
 // The framework will create a symlink called AppMaster.jar in the
 // working directory that will be linked back to the actual file.
 // The ApplicationMaster, if needs to reference the jar file, would
 // need to use the symlink filename.
 localResources.put("AppMaster.jar", amJarRsrc);
 // Set the local resources into the launch context
 amContainer.setLocalResources(localResources);

 // Set up the environment needed for the launch context
 Map<String, String> env = new HashMap<String, String>();
 // For example, we could setup the classpath needed.
 // Assuming our classes or jars are available as local resources in the
 // working directory from which the command will be run, we need to append
 // "." to the path.
 // By default, all the hadoop specific classpaths will already be available
 // in $CLASSPATH, so we should be careful not to overwrite it.
 String classPathEnv = "$CLASSPATH:./*:";
 env.put("CLASSPATH", classPathEnv);
 amContainer.setEnvironment(env);

 // Construct the command to be executed on the launched container
 String command =
 "${JAVA_HOME}" + /bin/java" +
 " MyAppMaster" +
 " arg1 arg2 arg3" +
 " 1>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stdout" +
 " 2>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stderr";

 List<String> commands = new ArrayList<String>();
 commands.add(command);
 // add additional commands if needed

 // Set the command array into the container spec
 amContainer.setCommands(commands);

 // Define the resource requirements for the container
 // For now, YARN only supports memory so we set the memory
 // requirements.
 // If the process takes more than its allocated memory, it will
 // be killed by the framework.
 // Memory being requested for should be less than max capability
 // of the cluster and all asks should be a multiple of the min capability.
 Resource capability = Records.newRecord(Resource.class);
 capability.setMemory(amMemory);
 amContainer.setResource(capability);

 // Set the container launch content into the ApplicationSubmissionContext
 appContext.setAMContainerSpec(amContainer);

After the setup process is complete, the client is finally ready to submit the application to the ASM.

 // Create the request to send to the ApplicationsManager
 SubmitApplicationRequest appRequest =
 Records.newRecord(SubmitApplicationRequest.class);
 appRequest.setApplicationSubmissionContext(appContext);

 // Submit the application to the ApplicationsManager
 // Ignore the response as either a valid response object is returned on
 // success or an exception thrown to denote the failure
 applicationsManager.submitApplication(appRequest);

At this point, the will have accepted the application and in the background, will go through the process of allocating a container ResourceManager
with the required specifications and then eventually setting up and launching the on the allocated container. ApplicationMaster
There are multiple ways a client can track progress of the actual task.

It can communicate with the and request for a report of the application via ClientRMProtocol#getApplicationReport. ResourceManager

 GetApplicationReportRequest reportRequest =
 Records.newRecord(GetApplicationReportRequest.class);
 reportRequest.setApplicationId(appId);
 GetApplicationReportResponse reportResponse =
 applicationsManager.getApplicationReport(reportRequest);
 ApplicationReport report = reportResponse.getApplicationReport();

The received from the consists of the following:ApplicationReport ResourceManager

General application information: , queue to which the application was submitted, user who submitted the application and the start ApplicationId
time for the application.
ApplicationMaster details: the host on which the is running, the rpc port (if any) on which it is listening for requests from clients ApplicationMaster
and a token that the client needs to communicate with the .ApplicationMaster
Application tracking information: If the application supports some form of progress tracking, it can set a tracking url which is available via Applicatio

#getTrackingUrl that a client can look at to monitor progress.nReport
ApplicationStatus: The state of the application as seen by the is available via #getYarnApplicationState. If ResourceManager ApplicationReport
the is set to FINISHED, the client should refer to #getFinalApplicationStatus to check for the actual YarnApplicationState ApplicationReport
success/failure of the application task itself. In case of failures, #getDiagnostics may be useful to shed some more light on the ApplicationReport
the failure.

If the supports it, a client can directly query the itself for progress updates via the host:rpcport information ApplicationMaster ApplicationMaster
obtained from the . It can also use the tracking url obtained from the report if available.ApplicationReport

In certain situations, if the application is taking too long or due to other factors, the client may wish to kill the application. The
ClientRMProtocol supports the forceKillApplication call that allows a client to send a kill signal to the via the ApplicationMaster Resource

. An if so designed may also support an abort call via its rpc layer that a client may be able to leverage. Manager ApplicationMaster

 KillApplicationRequest killRequest =
 Records.newRecord(KillApplicationRequest.class);
 killRequest.setApplicationId(appId);
 applicationsManager.forceKillApplication(killRequest);

Writing an ApplicationMaster

The is the actual owner of the job. It will be launched by the and via the client will be provided all the ApplicationMaster ResourceManager
necessary information and resources about the job that it has been tasked with to oversee and complete.
As the is launched within a container that may (likely will) be sharing a physical host with other containers, given the multi-ApplicationMaster
tenancy nature, amongst other issues, it cannot make any assumptions of things like pre-configured ports that it can listen on.
All interactions with the require an (there can be multiple attempts per application in case of failures). ResourceManager ApplicationAttemptId
When the starts up, the associated with this particular instance will be set in the environment. There are ApplicationMaster ApplicationAttemptId
helper apis to convert the value obtained from the environment into an object. ApplicationAttemptId

 Map<String, String> envs = System.getenv();
 ApplicationAttemptId appAttemptID =
 Records.newRecord(ApplicationAttemptId.class);
 if (!envs.containsKey(ApplicationConstants.APPLICATION_ATTEMPT_ID_ENV)) {
 // app attempt id should always be set in the env by the framework
 throw new IllegalArgumentException(
 "ApplicationAttemptId not set in the environment");
 }
 appAttemptID =
 ConverterUtils.toApplicationAttemptId(
 envs.get(ApplicationConstants.APPLICATION_ATTEMPT_ID_ENV));

After an has initialized itself completely, it needs to register with the via ApplicationMaster ResourceManager
AMRMProtocol#registerApplicationMaster. The always communicate via the Scheduler interface of the . ApplicationMaster ResourceManager

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

 // Connect to the Scheduler of the ResourceManager.
 YarnConfiguration yarnConf = new YarnConfiguration(conf);
 InetSocketAddress rmAddress =
 NetUtils.createSocketAddr(yarnConf.get(
 YarnConfiguration.RM_SCHEDULER_ADDRESS,
 YarnConfiguration.DEFAULT_RM_SCHEDULER_ADDRESS));
 LOG.info("Connecting to ResourceManager at " + rmAddress);
 AMRMProtocol resourceManager =
 (AMRMProtocol) rpc.getProxy(AMRMProtocol.class, rmAddress, conf);

 // Register the AM with the RM
 // Set the required info into the registration request:
 // ApplicationAttemptId,
 // host on which the app master is running
 // rpc port on which the app master accepts requests from the client
 // tracking url for the client to track app master progress
 RegisterApplicationMasterRequest appMasterRequest =
 Records.newRecord(RegisterApplicationMasterRequest.class);
 appMasterRequest.setApplicationAttemptId(appAttemptID);
 appMasterRequest.setHost(appMasterHostname);
 appMasterRequest.setRpcPort(appMasterRpcPort);
 appMasterRequest.setTrackingUrl(appMasterTrackingUrl);

 // The registration response is useful as it provides information about the
 // cluster.
 // Similar to the GetNewApplicationResponse in the client, it provides
 // information about the min/mx resource capabilities of the cluster that
 // would be needed by the ApplicationMaster when requesting for containers.
 RegisterApplicationMasterResponse response =
 resourceManager.registerApplicationMaster(appMasterRequest);

The has to emit heartbeats to the to keep it informed that the is alive and still running. ApplicationMaster ResourceManager ApplicationMaster
The timeout expiry interval at the is defined by a config setting accessible via .ResourceManager YarnConfiguration
RM_AM_EXPIRY_INTERVAL_MS with the default being defined by .DEFAULT_RM_AM_EXPIRY_INTERVAL_MS. The YarnConfiguration
AMRMProtocol#allocate calls to the count as heartbeats as it also supports sending progress update information. Therefore, ResourceManager
an allocate call with no containers requested and progress information updated if any is a valid way for making heartbeat calls to the ResourceMa

.nager
Based on the task requirements, the can ask for a set of containers to run its tasks on. The has to use the ApplicationMaster ApplicationMaster Re

 class to define the following container specifications: sourceRequest
Hostname: If containers are required to be hosted on a particular rack or a specific host. '*' is a special value that implies any host will do.
Resource capability: Currently, YARN only supports memory based resource requirements so the request should define how much
memory is needed. The value is defined in MB and has to less than the max capability of the cluster and an exact multiple of the min
capability.
Priority: When asking for sets of containers, an may define different priorities to each set. For example, the Map-ApplicationMaster
Reduce may assign a higher priority to containers needed for the Map tasks and a lower priority for the Reduce tasks' ApplicationMaster
containers.

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

 // Resource Request
 ResourceRequest rsrcRequest = Records.newRecord(ResourceRequest.class);

 // setup requirements for hosts
 // whether a particular rack/host is needed
 // useful for applications that are sensitive
 // to data locality
 rsrcRequest.setHostName("*");

 // set the priority for the request
 Priority pri = Records.newRecord(Priority.class);
 pri.setPriority(requestPriority);
 rsrcRequest.setPriority(pri);

 // Set up resource type requirements
 // For now, only memory is supported so we set memory requirements
 Resource capability = Records.newRecord(Resource.class);
 capability.setMemory(containerMemory);
 rsrcRequest.setCapability(capability);

 // set no. of containers needed
 // matching the specifications
 rsrcRequest.setNumContainers(numContainers);

After defining the container requirements, the has to construct an to send to the . The ApplicationMaster AllocateRequest ResourceManager Alloca
 consists of: teRequest

Requested containers: The container specifications and the no. of containers being requested for by the from the ApplicationMaster Reso
.urceManager

Released containers: There may be situations when the may have requested for more containers that it needs or due ApplicationMaster
to failure issues, decide to use other containers allocated to it. In all such situations, it is beneficial to the cluster if the ApplicationMaster
releases these containers back to the so that they can be re-allocated to other applications.ResourceManager
ResponseId: The response id that will be sent back in the response from the allocate call.
Progress update information: The can send its progress update (range between to 0 to 1) to the . ApplicationMaster ResourceManager

 List<ResourceRequest> requestedContainers;
 List<ContainerId> releasedContainers
 AllocateRequest req = Records.newRecord(AllocateRequest.class);

 // The response id set in the request will be sent back in
 // the response so that the ApplicationMaster can
 // match it to its original ask and act appropriately.
 req.setResponseId(rmRequestID);

 // Set ApplicationAttemptId
 req.setApplicationAttemptId(appAttemptID);

 // Add the list of containers being asked for
 req.addAllAsks(requestedContainers);

 // If the ApplicationMaster has no need for certain
 // containers due to over-allocation or for any other
 // reason, it can release them back to the ResourceManager
 req.addAllReleases(releasedContainers);

 // Assuming the ApplicationMaster can track its progress
 req.setProgress(currentProgress);

 AllocateResponse allocateResponse = resourceManager.allocate(req);

The sent back from the provides theAllocateResponse ResourceManager
following information via the AMResponse object:

Reboot flag: For scenarios when the may get out of sync with the .ApplicationMaster ResourceManager
Allocated containers: The containers that have been allocated to the .ApplicationMaster
Headroom: Headroom for resources in the cluster. Based on this information and knowing its needs, an can make ApplicationMaster
intelligent decisions such as re-prioritizing sub-tasks to take advantage of currently allocated containers, bailing out faster if resources
are not becoming available etc.

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Completed containers: Once an triggers a launch an allocated container, it will receive an update from the ApplicationMaster ResourceM
 when the container completes. The can look into the status of the completed container and take appropriate anager ApplicationMaster

actions such as re-trying a particular sub-task in case of a failure.
One thing to note is that containers will not be immediately allocated to the . This does not imply that the ApplicationMaster ApplicationMa

 should keep on asking the pending count of required containers. Once an allocate request has been sent, the will ster ApplicationMaster
eventually be allocated the containers based on cluster capacity, priorities and the scheduling policy in place. The ApplicationMaster
should only request for containers again if and only if its original estimate changed and it needs additional containers.

 // Get AMResponse from AllocateResponse
 AMResponse amResp = allocateResponse.getAMResponse();

 // Retrieve list of allocated containers from the response
 // and on each allocated container, lets assume we are launching
 // the same job.
 List<Container> allocatedContainers = amResp.getAllocatedContainers();
 for (Container allocatedContainer : allocatedContainers) {
 LOG.info("Launching shell command on a new container."
 + ", containerId=" + allocatedContainer.getId()
 + ", containerNode=" + allocatedContainer.getNodeId().getHost()
 + ":" + allocatedContainer.getNodeId().getPort()
 + ", containerNodeURI=" + allocatedContainer.getNodeHttpAddress()
 + ", containerState" + allocatedContainer.getState()
 + ", containerResourceMemory"
 + allocatedContainer.getResource().getMemory());

 // Launch and start the container on a separate thread to keep the main
 // thread unblocked as all containers may not be allocated at one go.
 LaunchContainerRunnable runnableLaunchContainer =
 new LaunchContainerRunnable(allocatedContainer);
 Thread launchThread = new Thread(runnableLaunchContainer);
 launchThreads.add(launchThread);
 launchThread.start();
 }

 // Check what the current available resources in the cluster are
 Resource availableResources = amResp.getAvailableResources();
 // Based on this information, an ApplicationMaster can make appropriate
 // decisions

 // Check the completed containers
 // Let's assume we are keeping a count of total completed containers,
 // containers that failed and ones that completed successfully.
 List<ContainerStatus> completedContainers =
 amResp.getCompletedContainersStatuses();
 for (ContainerStatus containerStatus : completedContainers) {
 LOG.info("Got container status for containerID= "
 + containerStatus.getContainerId()
 + ", state=" + containerStatus.getState()
 + ", exitStatus=" + containerStatus.getExitStatus()
 + ", diagnostics=" + containerStatus.getDiagnostics());

 int exitStatus = containerStatus.getExitStatus();
 if (0 != exitStatus) {
 // container failed
 // -100 is a special case where the container
 // was aborted/pre-empted for some reason
 if (-100 != exitStatus) {
 // application job on container returned a non-zero exit code
 // counts as completed
 numCompletedContainers.incrementAndGet();
 numFailedContainers.incrementAndGet();
 }
 else {
 // something else bad happened
 // app job did not complete for some reason
 // we should re-try as the container was lost for some reason
 // decrementing the requested count so that we ask for an
 // additional one in the next allocate call.

#
#
#
#
#
#
#
#
#

 numRequestedContainers.decrementAndGet();
 // we do not need to release the container as that has already
 // been done by the ResourceManager/NodeManager.
 }
 }
 else {
 // nothing to do
 // container completed successfully
 numCompletedContainers.incrementAndGet();
 numSuccessfulContainers.incrementAndGet();
 }
 }

After a container has been allocated to the , it needs to follow a similar process that the Client followed in setting up the ApplicationMaster Contain
 for the eventual task that is going to be running on the allocated Container. Once the is defined, the erLaunchContext ContainerLaunchContext Ap

 can then communicate with the to start its allocated container. plicationMaster ContainerManager

 //Assuming an allocated Container obtained from AMResponse
 Container container;
 // Connect to ContainerManager on the allocated container
 String cmIpPortStr = container.getNodeId().getHost() + ":"
 + container.getNodeId().getPort();
 InetSocketAddress cmAddress = NetUtils.createSocketAddr(cmIpPortStr);
 ContainerManager cm =
 (ContainerManager)rpc.getProxy(ContainerManager.class, cmAddress, conf);

 // Now we setup a ContainerLaunchContext
 ContainerLaunchContext ctx =
 Records.newRecord(ContainerLaunchContext.class);

 ctx.setContainerId(container.getId());
 ctx.setResource(container.getResource());

 try {
 ctx.setUser(UserGroupInformation.getCurrentUser().getShortUserName());
 } catch (IOException e) {
 LOG.info(
 "Getting current user failed when trying to launch the container",
 + e.getMessage());
 }

 // Set the environment
 Map<String, String> unixEnv;
 // Setup the required env.
 // Please note that the launched container does not inherit
 // the environment of the ApplicationMaster so all the
 // necessary environment settings will need to be re-setup
 // for this allocated container.
 ctx.setEnvironment(unixEnv);

 // Set the local resources
 Map<String, LocalResource> localResources =
 new HashMap<String, LocalResource>();
 // Again, the local resources from the ApplicationMaster is not copied over
 // by default to the allocated container. Thus, it is the responsibility
 // of the ApplicationMaster to setup all the necessary local resources
 // needed by the job that will be executed on the allocated container.

 // Assume that we are executing a shell script on the allocated container
 // and the shell script's location in the filesystem is known to us.
 Path shellScriptPath;
 LocalResource shellRsrc = Records.newRecord(LocalResource.class);
 shellRsrc.setType(LocalResourceType.FILE);

#
#
#
#
#
#
#

 shellRsrc.setVisibility(LocalResourceVisibility.APPLICATION);
 shellRsrc.setResource(
 ConverterUtils.getYarnUrlFromURI(new URI(shellScriptPath)));
 shellRsrc.setTimestamp(shellScriptPathTimestamp);
 shellRsrc.setSize(shellScriptPathLen);
 localResources.put("MyExecShell.sh", shellRsrc);

 ctx.setLocalResources(localResources);

 // Set the necessary command to execute on the allocated container
 String command = "/bin/sh ./MyExecShell.sh"
 + " 1>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stdout"
 + " 2>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stderr";

 List<String> commands = new ArrayList<String>();
 commands.add(command);
 ctx.setCommands(commands);

 // Send the start request to the ContainerManager
 StartContainerRequest startReq = Records.newRecord(StartContainerRequest.class);
 startReq.setContainerLaunchContext(ctx);
 cm.startContainer(startReq);

The , as mentioned previously, will get updates of completed containers as part of the response from the ApplicationMaster
AMRMProtocol#allocate calls. It can also monitor its launched containers pro-actively by querying the for the status. ContainerManager

 GetContainerStatusRequest statusReq =
 Records.newRecord(GetContainerStatusRequest.class);
 statusReq.setContainerId(container.getId());
 GetContainerStatusResponse statusResp = cm.getContainerStatus(statusReq);
 LOG.info("Container Status"
 + ", id=" + container.getId()
 + ", status=" + statusResp.getStatus());

FAQ

How can I distribute my application's jars to all of the nodes in the YARN cluster that need it?

You can use the to add resources to your application request. This will cause YARN to distribute the resource to the LocalResource ApplicationMaster
node. If the resource is a tgz, zip, or jar - you can have YARN unzip it. Then, all you need to do is add the unzipped folder to your classpath. For example,
when creating your application request:

 File packageFile = new File(packagePath);
 Url packageUrl = ConverterUtils.getYarnUrlFromPath(
 FileContext.getFileContext.makeQualified(new Path(packagePath)));

 packageResource.setResource(packageUrl);
 packageResource.setSize(packageFile.length());
 packageResource.setTimestamp(packageFile.lastModified());
 packageResource.setType(LocalResourceType.ARCHIVE);
 packageResource.setVisibility(LocalResourceVisibility.APPLICATION);

 resource.setMemory(memory)
 containerCtx.setResource(resource)
 containerCtx.setCommands(ImmutableList.of(
 "java -cp './package/*' some.class.to.Run "
 + "1>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stdout "
 + "2>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stderr"))

#
#
#
#

 containerCtx.setLocalResources(
 Collections.singletonMap("package", packageResource))
 appCtx.setApplicationId(appId)
 appCtx.setUser(user.getShortUserName)
 appCtx.setAMContainerSpec(containerCtx)
 request.setApplicationSubmissionContext(appCtx)
 applicationsManager.submitApplication(request)

As you can see, the setLocalResources command takes a map of names to resources. The name becomes a sym link in your application's cwd, so you
can just refer to the artifacts inside by using ./package/*. Note: Java's classpath (cp) argument is VERY sensitive. Make sure you get the syntax EXACTLY
correct.

Once your package is distributed to your , you'll need to follow the same process whenever your starts a new ApplicationMaster ApplicationMaster
container (assuming you want the resources to be sent to your container). The code for this is the same. You just need to make sure that you give your App

 the package path (either HDFS, or local), so that it can send the resource URL along with the container ctx.licationMaster

How do I get the 's ?ApplicationMaster ApplicationAttemptId

The will be passed to the via the environment and the value from the environment can be converted into an ApplicationAttemptId ApplicationMaster Applica
 object via the helper function.tionAttemptId ConverterUtils

My container is being killed by the Node Manager

This is likely due to high memory usage exceeding your requested container memory size. There are a number of reasons that can cause this. First, look
at the process tree that the node manager dumps when it kills your container. The two things you're interested in are physical memory and virtual memory.
If you have exceeded physical memory limits your app is using too much physical memory. If you're running a Java app, you can use -hprof to look at what
is taking up space in the heap. If you have exceeded virtual memory, things are slightly more complicated.

How can my kill a container? Releasing it via AMRMProtocol#allocate does ApplicationMaster
not seem to work.

A container can only be released back to the if it has not been launched. To kill a launched container, the can send a ResourceManager ApplicationMaster
stop command to the container via #stopContainer(StopContainerRequest request). This will trigger a kill event to the launched ContainerManager
container and this container will eventually be part of the list of completed Containers in the RM's response to the AM on an AMRMProtocol#allocate call.

Useful Links
Map Reduce Next Generation Architecture
Map Reduce Next Generation Scheduler

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
https://issues.apache.org/jira/secure/attachment/12486023/MapReduce_NextGen_Architecture.pdf
http://developer.yahoo.com/blogs/hadoop/posts/2011/03/mapreduce-nextgen-scheduler/

	WritingYarnApps

