
NiFi Project and Repository Restructuring
This wiki page is based on a discussion on the dev@nifi mailing list. The discussion thread that prompted this is here:

https://lists.apache.org/thread.html/939a7630a2e32594cd10444e48b7a1321fd9ce51834d911a8c04b6a9@%3Cdev.nifi.apache.org%3E

Table of Contents

Goals
Proposed End State

Diagram of Repositories
Description of Repositories
Benefits of Multiple Repositories

A Note About Jira
An Alternative: Single project in a mono-repo

Proposed Approach
Phase 1: nifi

Assumptions
Steps
Process

Phase 2: nifi-standard-libs
Steps

Phase 3: nifi-minifi
Additional Potential Phases

Goals
Faster build times for dev/testing/review/release
Smaller release artifacts
Maintain or increase the productivity of dev community (i.e., the new project structure should not be too burdensome for existing and future
contributors to adopt)
Facilitate code reuse across projects, such as nifi and nifi-registry, e.g., shared security provider implementations for authentication and
authorization.
Position the NiFi project to more easily support and take advantage of future Java language features, such as modules.
Better separation of concerns & better defined interfaces / touch points between project components

Promote the idea that each module contains its own code and unit tests against public APIs such that it can be developed, tested, and
released independently
Cross-module integration tests can exist outside of each module, in their own module that tests the integration of two or more modules

Proposed End State

Diagram of Repositories

https://lists.apache.org/thread.html/939a7630a2e32594cd10444e48b7a1321fd9ce51834d911a8c04b6a9@%3Cdev.nifi.apache.org%3E

Description of Repositories

The following repositories are proposed. Each repository would contain a top-level maven project that inherits from the parent pom.org.apache:apache

Project
/ Repo
Name

New? Dependencies Description

nifi-api new -
extracte
d from
nifi

Contains any Java APIs that need to be agreed upon by multiple top-level projects, such as nifi-framework and nifi-
extensions

nifi-
framework

new -
extracte
d from
nifi

nifi-api, nifi-
maven, nifi-fds,
nifi-registry, nifi-
standard-libs

Contains the NiFi web server and front end without any unneeded flow extension bundles such as processors, controller
services, and reporting tasks.

nifi-
extensio
ns

new -
extracte
d from
nifi

nifi-api, nifi-
maven, nifi-
standard-libs

Extension bundles for NiFi, such as processors, controller services, and reporting tasks.

nifi-
release

new -
extracte
d from
nifi

nifi-framework,
nifi-extensions

Will be the new home for the nifi-assembly that produces convenience binaries such as , and in the future nifi-X.Y.Z.zip
alternate convenience binaries, for example, .nifi-slim-x.y.z.zip

Eventually, this repository will also take over the current role of the nifi-minifi project/repository by providing the nifi-
 assembly, but this will require moving some additional modules from nifi-minifi into nifi-framework and minifi-X.Y.Z.zip

nifi-extensions.

nifi-
toolkit

new -
extracte
d from
nifi

nifi-framework,
nifi-registry, nifi-
standard-libs

Contains the nifi-toolkit source code and assembly

nifi-
maven

existing nifi-api Contains the Maven plugin used for packaging NARs

nifi-fds existing NiFi Flow Design system - reusable front end components used to create consistent front ends, such as the nifi and nifi-
registry web UIs

nifi-
registry

existing nifi-api, nifi-fds,
nifi-standard-libs

A web service for centralized storage and versioning of NiFi flows and extensions

nifi-
minifi-
cpp

existing A native implementation of libminifi and the MiNiFi agent

nifi-
standard
-libs

new -
introduc
ed later

Contains shared code / implementations, such as security provider implementations for authentication and authorization.
Note that introducing a nifi-standard-libs project/repository is a long-term goal as part of the project structure roadmap and
not part of the initial restructuring. The initial decomposition of nifi into new projects will not include any code changes, and
therefore extracting shared code out of nifi-framework and nifi-registry into nifi-standard-libraries will happen in a future
phase.

The following repositories are proposed to be archived. That is, frozen from farther changes once the new repositories are ready.

: nifi will have been broken up into nifi-api, nifi-framework, nifi-extensions, nifi-release
Alternatively: this repo could be reduced to a single pom module containing the pom that inherits from org.apache.nifi:nifi org.

 and can be a parent pom for other projects.apache:apache

nifi-minifi: will become a new assembly of nifi-framework and nifi-extensions that lives in the nifi-release repo

Benefits of Multiple Repositories

Multiple git repositories are not required in order to have multiple Maven projects. An alternative is a single git source code repository with multiple projects
in sub directories. This was considered. Pros and cons of both approaches were also discussed on the related to this proposal. This discussion thread
section of the proposal serves as a summary of that discussion and the thinking behind why this proposal recommends multiple repositories at this time.

Advantages of single repository:

Easier to make cross-project changes, especially for new comers. Also for some, it will be easier to review changes that impact multiple projects if
they are in a single PR.
Git history for combined/entire project in one place
Single focal point for entire community to collaborate on and follow
Less infra to manage (though potentially mitigated now that access to repos is managed by ASF LDAP groups)

Advantages of multiple repositories:

Easier for Release Mangers as they are performing source releases of an entire repository.
Quicker to build an entire repository. Easier to setup reliable, fast CI builds. In a multi-repo setup, builds will never span multiple projects as
commits are, by definition, isolated to a single repo. Also avoids having to "build all project" or setting up CI tools such as Travis or Jenkins to
scope builds based on contents of commits.
Separate repos forces pull requests to stay scoped to a given component, making for overall smaller PRs. Easier to look at a repo and see what
work/contributions are still open.
Easier to understand the history for a single project or module in the git history, e.g., "show me all changes to this project since the last tag /
release"
Lower learning curve for making changes to a single project, as the overall code base is smaller.

At this time (though it is still being discussed), the multiple repository approach seems to be merited, especially based on it being the optimized approach
for managing source code releases.

To mitigate the downsides of multiple repositories, the following is recommended:

Additional documentation and guidance be prepared for developers and contributors, especially getting started guides that target new comers.
For example, document the project and module structure to help newcomers navigate repositories.
Setup a CI job somewhere that publishes a SNAPSHOT build of every project's main branch, and allow development to on SNAPSHOT depend
versions of dependencies. This will enable work to continue without releasing stable versions of dependencies. The CI infrastructure and where to
host SNAPSHOT artifacts has not been identified. It is possible that GitHub Actions could be setup to run the CI jobs to publish
SNAPSHOT artifacts to the Apache Maven repository managed by ASF infra.

A Note About Jira

This proposal only impacts source code projects and repositories. At this time, no change is being suggested for our Jira project structure or issue tracking
system. It is recommended that even under different source code projects and repositories, issues are still tracked in the existing Jira project (i.e., NIFI)
and differentiated as to which source code project/repo/artifact they impact via fields on the issue, such as component, label, fix version, etc.

An Alternative: Single project in a mono-repo

There are downsides to multiple projects, regardless of single or multiple repository. The main downside is development. If one project depends on
another, and changes need to be made in the dependency, then the dependency must be updated, build, and installed as a SNAPSHOT in order for work
to continue. This can be avoided by structuring the project in the other extreme, so that every component is part of one maven project. In order for this
approach to be considered, someone would need to do exploratory work to understand how we could significantly speed up builds or facilitate partial
builds of sub-modules automatically based on which files have been changed in a commit to the mono-repo.

Proposed Approach

Phase 1: nifi

Decompose nifi project/repo into:

https://lists.apache.org/thread.html/939a7630a2e32594cd10444e48b7a1321fd9ce51834d911a8c04b6a9@%3Cdev.nifi.apache.org%3E

1.

2.

3.

1.
2.
3.
4.

5.
6.

1.

2.

3.

4.
5.

6.

7.

8.
9.

1.
2.

3.

nifi-api
nifi-framework
nifi-extensions
nifi-release
nifi-toolkit

Assumptions

The project version for new projects being extracted from the existing nifi repository/project will match the current version that is set on the nifi
project at the time of restructuring.
Every Maven module that currently exists in the nifi repository/project will be migrated to exactly one destination repository/project. By "exactly
one", we mean that we do not anticipate the contents of any existing module will need to be split across multiple destinations.
No maven artifact coordinates will change for existing modules as part of the restructuring. That is, an existing artifact's group:artifact:

 should not change even if it is in a new location, meaning modules that have dependencies on moved modules should not need to have version
their dependencies updates.

Steps

Create a mapping of existing modules in the nifi repository/project into where they will live in the new structure
Use utilities such as git filter-branch or git-subtree to move existing modules while retaining as much revision history as possible
Update the pom files for migrated modules to contain their new parents, etc.
Each new repository/project will get a new assembly module that just packages that artifact so that releases can be done from that project
repository
Write new assemblies in the nifi-release project/repository that produces something that closely matches the existing assembly
Get all builds and tests working, although this should be minimal as no maven module coordinates are changing.

Process

One or more community volunteers will manually attempt the above steps, taking detailed notes of commands they use and changes that they
need to make in order to get everything working, such as modifications to pom files.
From those notes, a script will be made that streamlines (ideally, fully automated) the restructuring the nifi repository into new repositories. This
will enable us to repeatedly perform the restructuring from any given revision of the main branch.
The restructuring automation script(s) and instructions for use will be distributed on the Apache NiFi dev@ mailing list. The NiFi dev community
will be asked to verify the procedure and resulting output in a manner similar to a RC verification vote. The final output assembly of the
restructured process should match the output assembly of the current nifi-assembly module from the 1.x line on the main branch today.
The automation process will go through as many reviews as needed until it passes a vote by the NiFi PMC.
A specified date and time will be chosen for the restructuring. Any large branches from main should be merged before that date to avoid
burdensome rebasing that will be necessary for any changes not merged before the restructuring.
On the agreed upon date and time, with the assistance of ASF Infra, the existing nifi repository will be frozen from modification. The restructuring
script will be run and the resulting repositories will be added as top level Github repositories, again, with the help of ASF Infra.
Unmerged pull requests to the nifi repo that were under active development will need to be recreated as PRs to the new repositories. This
responsibility will fall to the author of each PR. PRs will stay open to the old nifi repository for a time as a historical record, but only those that are
recreated against the new repositories by their authors will be considered to be merged.
Contributions continue as normal, but from forks of the new repositories.
The first release after the restructuring will be a release from all repositories/projects in the order dictated by the dependency graph shown above.
After that, releases will only need to be performed as needed from each repository/project.

NOTE: There should be a community discussion on how versioning and releasing of the new, smaller projects should be handled. That
is, should we always release everything so that versions stay aligned, even if there are not changes to a particular component such as
nifi-api, which changes very infrequently, or should we follow semantic versioning for each new project and allow them to advance and
be released independently of each other and only as needed.

Phase 2: nifi-standard-libs

Introduce nifi-standard-libs as a home for shared, top-level, reusable libraries of components across the new collection of projects

Steps

A new nifi-standard-libs project and repository is introduced.
Similar code across nifi-framework and nifi-registry, and possibly other projects such as nifi-toolkit and nifi-extensions, is rewritten as generic,
reusable libraries in sub-modules of nifi-standard-libs, e.g., nifi-standard-libs-security could contain shared authentication and authorization APIs
and provider implementations.
Code from nifi-framework, nif-registry, etc. is removed and replaced with library implementations from nifi-standard-libs modules.

Phase 3: nifi-minifi

Migrate code modules from nifi-minifi into nifi-framework, nifi-extensions, and (possibly) nifi-standard-libs. Migrate the nifi-minifi assembly into nifi-release.

Additional Potential Phases

Once the initial restructuring and decomposition of the nifi project/repo is complete, there may be opportunities for farther steps such as breaking nifi-
extensions into smaller projects, or dropping support for some legacy extensions.

	NiFi Project and Repository Restructuring

