KIP-504 - Add new Java Authorizer Interface

® Status
® Motivation
° Goals
® Public Interfaces
© Authorizer Configuration
© Authorizer API
® Proposed Changes
© Asynchronous update requests
Deprecate existing Scala Authorizer Trait
AclAuthorizer
SimpleAclAuthorizer
Optional Interfaces
= Reconfigurable
® Compatibility, Deprecation, and Migration Plan
® TestPlan
® Rejected Alternatives
O Description of Authorizer as proposed in KIP-50
O Separate authorizers for each listener
© Extend SimpleAclAuthorizer to support the new API
© Make authorize() asynchronous

[e]
[e]
[e]
[e]

Status

Current state: "Accepted”

Discussion thread: here

JIRA: KAFKA-8865 - Getting issue details... STATUS

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

Kafka supports pluggable authorization using the Scala trait kaf ka. securi ty. aut h. Aut hori zer . KIP-50 was accepted to replace this with a Java
interface and Java ACL classes in the package or g. apache. kaf ka. common inthe ' cl i ents' module. But this was never merged. Since KIP-50 was
accepted, we have added new broker-side pluggable interfaces as Java interfaces in' cl i ent s’ in the package “or g. apache. kaf ka. server . These
Java interfaces provide a better compatibility story than Scala traits, allowing us to evolve the API.

This KIP is a replacement for KIP-50 to introduce a new Java interface for authorization. KIP-50 proposed to break compatibility because it was in the early
days of adoption of authorization in Kafka. Since Kafka authorization has been widely adopted since then, we propose to deprecate, but continue to
support the old interface to avoid breaking existing deployments during upgrade. We will also address the known limitations of the existing interface.

Goals

1. Define a new Java interface for authorizer in 'cl i ent s' module in the package 'or g. apache. kaf ka. ser ver ' similar to other server-side
pluggable classes.

2. KIP-4 has added ACL-related classes in the package or g. apache. kaf ka. conmon (e.g. Resour cePat t er n and AccessCont rol Entry) to
support ACL management using Admi nCl i ent . We will attempt to reuse these classes wherever possible.

3. Deprecate but retain existing Scala authorizer API for backward compatibility to ensure that existing custom authorizers can be used with new
brokers.

4. Provide context about the request to authorizers to enable context-specific logic based on security protocol or listener to be applied to
authorization.

5. Provide additional context about the request including Api Key and correlation id from the request header since these are useful for matching
debug-level authorization logs with corresponding request logs.

6. For ACL updates, provide request context including principal requesting the update and the listener on which request arrived to enable additional
validation.

7. Return individual responses for each access control entry update when multiple entries of a resource are updated. At the moment, we update the
ZooKeeper node for a resource pattern multiple times when a request adds or removes multiple entries for a resource in a single update request.
Since it is a common usage pattern to add or remove multiple access control entries while updating ACLs for a resource, batched updates will be
supported to enable a single atomic update for each resource pattern.

8. Provide authorization usage flag to authorizers to enable authorization logs to indicate attempts to access unauthorized resources. Kafka brokers
log denied operations at | NFOlevel and allowed operations at DEBUG level with the expectation that denied operations are rare and indicate
erroneous or malicious use of the system. But we currently have several uses of Aut hor i zer #aut hor i ze for filtering accessible resources or
operations, for example for regex subscription. These fill up authorization logs with denied log entries, making these logs unusable for determining
actual attempts to access resources by users who don’t have appropriate permissions. Audit flag will enable the authorizer to determine the
severity of denied access.

https://lists.apache.org/thread.html/f9830e4cb4bd7e9cc031c51395dfd670ec6839fef432d86d5074334b@%3Cdev.kafka.apache.org%3E
https://issues.apache.org/jira/browse/KAFKA-8865
https://cwiki.apache.org/confluence/display/KAFKA/KIP-50+-+Move+Authorizer+to+o.a.k.common+package
https://cwiki.apache.org/confluence/display/KAFKA/KIP-4+-+Command+line+and+centralized+administrative+operations

9.

10.
11.
12.

13.

Publ

For authorizers that don't store metadata in ZooKeeper, ensure that authorizer metadata for each listener is available before starting up the
listener. This enables different authorization metadata stores for different listeners.

Add a new out-of-the-box authorizer class that implements the new authorizer interface, making use of the features supported by the new API.
Retain existing audit log entry format in Si npl eAcl Aut hori zer to ensure that tools that parse these logs continue to work.

Enable Aut hori zer implementations to make use of additional Kafka interfaces similar to other pluggable callbacks. Authorizers can implement
or g. apache. kaf ka. cormon. Reconf i gur abl e to support dynamic reconfiguration without restarting the broker. Authorizers will also be
provided cluster id which may be included in logs or used to support centralized ACL storage.

Enable asynchronous ACL updates to avoid blocking broker request threads when ACLs are updated in a remote store (e.g. a database).

ic Interfaces

Authorizer Configuration

The existing configuration option “aut hori zer . cl ass.name” will be extended to support broker authorizers using the new Java interface or g. apache.
kaf ka. ser ver .authorizer.Aut hor i zer . The config will continue to support authorizers using the existing Scala trait kaf ka. securi ty. aut h.

Aut hor i

zer

Authorizer API

The new

Java A

Java Aut hori zer interface and its supporting classes are shown below:

uthorizer Interface

package org. apache. kaf ka. server. aut hori zer;

i mport
i mport
i mport
i nport
i mport
i mport
i nport
i mport
i mport

| **

*

java.io. d oseabl e;

java.util.List;

java.util. Mp;

java.util.concurrent. Conpl eti onSt age;

or g. apache. kaf ka. conmon. Conf i gur abl e;

or g. apache. kaf ka. cormon. Endpoi nt;

or g. apache. kaf ka. conmon. acl . Acl Bi ndi ng;

org. apache. kaf ka. conmon. acl . Acl Bi ndi ngFil ter;

or g. apache. kaf ka. common. annot ati on. I nterfaceStability;

* Pluggabl e authorizer interface for Kafka brokers.

*

* Startup sequence in brokers:

*

* <l'i >Broker creates authorizer instance if configured in “authorizer.class.name .</|i>

* <l i >Broker configures and starts authorizer instance. Authorizer inplenentation starts loading its
netadata. </1i>

* <l i>Broker starts SocketServer to accept connections and process requests.

* For each listener, SocketServer waits for authorization netadata to be available in the

aut hori zer before accepting connections. The future returned by {@ink #start(AuthorizerServerlnfo)}
nmust return only when authorizer is ready to authorize requests on the listener.

* <l i >Broker accepts connections. For each connection, broker perforns authentication and then accepts Kafka
requests.

For each request, broker invokes {@ink #authorize(Authorizabl eRequest Context, List)} to authorize
actions performed by the request.

*

*

* Authorizer inplenentation class may optionally inplenment @ @i nk org. apache. kaf ka. cormon. Reconfi gur abl e}
* to enable dynam c reconfiguration without restarting the broker.

* <p>

* Thr eadi ng nodel : </ b>

*

* Al'l authorizer operations including authorization and ACL updates nust be thread-safe.
* <l'i >ACL update nethods are asynchronous. |nplenmentations with |ow update latency may return a

conpleted future using {@ink java.util.concurrent. Conpl et abl eFut ur e#conpl et edFut ure(oj ect)}.
This ensures that the request will be handl ed synchronously by the caller w thout using a
purgatory to wait for the result. If ACL updates require renote comunication which may bl ock,
return a future that is conpleted asynchronously when the renote operation conpletes. This enables
the caller to process other requests on the request threads w thout blocking.

* Any threads or thread pools used for processing renpte operations asynchronously can be started during
* {@ink #start(AuthorizerServerlinfo)}. These threads nust be shutdown during {@ink Authorizer#close()}.

* <ful>

* </ p>

*/

@nterfaceStability. Evol ving

public interface Authorizer extends Configurable, C oseable {

* Starts | oading authorization netadata and returns futures that can be used to wait until
* nmetadata for authorizing requests on each listener is available. Each listener will be

* started only after its netadata is available and authorizer is ready to start authorizing
* requests on that |istener.

* @aram serverlinfo Metadata for the broker including broker id and |istener endpoints
* @eturn Conpl etionStage for each endpoint that conpl etes when authorizer is ready to
* start authorizing requests on that |istener.

*/

Map<Endpoi nt, ? extends Conpl eti onSt age<Voi d>> start (Aut hori zer Serverlnfo serverlnfo);

* Authorizes the specified action. Additional netadata for the action is specified

* in “request Cont ext .

* <p>

* This is a synchronous APl designed for use with locally cached ACLs. Since this nethod is invoked on the
* request thread while processing each request, inplenentations of this method should avoid tinme-consunm ng
* renpte communi cation that may bl ock request threads.

* @aram request Cont ext Request context including request type, security protocol and |istener nane
* @aram actions Actions being authorized including resource and operation for each action
* @eturn List of authorization results for each action in the same order as the provided actions
*/

Li st <Aut hori zati onResul t > aut hori ze(Aut hori zabl eRequest Cont ext request Cont ext, List<Action> actions);

/*-k

* Creates new ACL bi ndings.

* <p>

* This is an asynchronous APl that enables the caller to avoid blocking during the update. |nplenentations
of this

* APl can return conpleted futures using {@ink java.util.concurrent. Conpl etabl eFut ure#conpl et edFuture
(Qoj ect)}

* to process the update synchronously on the request thread.

* @aram request Cont ext Request context if the ACL is being created by a broker to handle

* a client request to create ACLs. This may be null if ACLs are created directly in ZooKeeper
* usi ng Acl Command.

* @aram acl Bi ndings ACL bindings to create

* @eturn Create result for each ACL binding in the sane order as in the input list. Each result
* is returned as a Conpl etionStage that conpletes when the result is avail able.
*/
Li st <? extends Conpl eti onSt age<Acl Creat eResul t >> creat eAcl s(Aut hori zabl eRequest Cont ext request Cont ext,
Li st <Acl Bi ndi ng> acl Bi ndi ngs);

/**

* Deletes all ACL bindings that match the provided filters.

* o<p>

* This is an asynchronous APl that enables the caller to avoid blocking during the update. |nplenmentations
of this

* APl can return conpleted futures using {@ink java.util.concurrent. Conpl et abl eFut ur e#conpl et edFut ure
(Object)}

* to process the update synchronously on the request thread.

* @aram request Context Request context if the ACL is being deleted by a broker to handle

* a client request to delete ACLs. This may be null if ACLs are deleted directly in ZooKeeper
* usi ng Acl Command.

* @aramaclBindingFilters Filters to match ACL bindings that are to be del eted

* @eturn Delete result for each filter in the sane order as in the input l|ist.
* Each result indicates which ACL bindings were actually deleted as well as any

* bi ndi ngs that matched but could not be deleted. Each result is returned as a
* Conpl eti onSt age that conpletes when the result is avail able.
*/
Li st <? extends Conpl eti onSt age<Acl Del et eResul t >> del et eAcl s(Aut hori zabl eRequest Cont ext request Cont ext,
Li st <Acl Bi ndi ngFi | ter> acl Bi ndi ngFilters);

/**

* Returns ACL bindings which match the provided filter.

* o <p>

* This is a synchronous APl designed for use with locally cached ACLs. This nethod is invoked on the
request

* thread while processing DescribeAcls requests and should avoid time-consum ng renote conmuni cation that
may

* bl ock request threads.

*

* @eturn Iterator for ACL bindings, which may be populated lazily.

*/

It er abl e<Acl Bi ndi ng> acl s(Acl BindingFilter filter);
}

Request context will be provided to authorizers using a new interface Aut hor i zabl eRequest Cont ext . The existing class or g. apache. kaf ka.
common. r equest s. Request Cont ext will implement this interface. New methods may be added to this interface in future, so mock implementations
using this interface should adapt to these changes.

Request Context

package org. apache. kaf ka. server. aut hori zer;

i mport java.net.|net Address;

i nport org. apache. kaf ka. conmon. annot ati on. I nterfaceStability;
i mport org. apache. kaf ka. common. security. aut h. Kaf kaPri nci pal ;

i mport org. apache. kaf ka. conmon. security. aut h. SecurityProtocol;

| **

* Request context interface that provides data fromrequest header as well as connection
* and authentication information to plugins.
*/

@nterfaceStability. Evol ving

public interface Authorizabl eRequest Context {

/**

* Returns nane of |istener on which request was received.
*/

String |istenerNanme();

/**

* Returns the security protocol for the listener on which request was received.
*/

SecurityProtocol securityProtocol ();

/**

* Returns authenticated principal for the connection on which request was received.
*/

Kaf kaPri nci pal principal ();

/**

* Returns client |P address from which request was sent.
*/

I net Address client Address();

| **

* 16-bit APl key of the request fromthe request header. See

* https://kaf ka. apache. or g/ prot ocol #pr ot ocol _api _keys for request types.
*/

int requestType();

/**

* Returns the request version fromthe request header.
*/

int requestVersion();

/**

* Returns the client id fromthe request header.
*/

String clientld();

/**

* Returns the correlation id fromthe request header.
*/

int correlationld();

Aut hori zer Ser ver | nf o provides runtime broker configuration to authorization plugins including broker id, cluster id and endpoint information. New
methods may be added to this interface in future, so mock implementations using this interface should adapt to these changes.

Broker Runtime Config

package org. apache. kaf ka. server. aut hori zer;

inmport java.util.Collection;

i mport org. apache. kaf ka. coomon. Cl ust er Resour ce;

i mport org. apache. kaf ka. conmon. Endpoi nt ;

i nport org. apache. kaf ka. conmon. annot ation. I nterfaceStability;

/**
* Runtinme broker configuration netadata provided to authorizers during start up.
*/

@nterfaceStability. Evol ving

public interface AuthorizerServerinfo {

/**

* Returns cluster netadata for the broker running this authorizer including cluster id.
*/
Cl ust er Resource cl usterResource();

/**

* Returns broker id. This may be a generated broker id if “broker.id was not configured.
*/

int brokerld();

/**

* Returns endpoints for all listeners including the advertised host and port to which
* the listener is bound.

*/

Col | ecti on<Endpoi nt> endpoi nts();

/**

* Returns the inter-broker endpoint. This is one of the endpoints returned by {@ink #endpoints()}.
*/

Endpoi nt i nter Broker Endpoi nt ();

Endpoi nt is added as a common class so that it may be reused in several places in the code where we use this abstraction.

Endpoint

package org. apache. kaf ka. conmon;

import java.util.Qbjects;
import java.util.Optional;

i mport org.apache. kaf ka. conmon. annot ation. I nterfaceStability;
i nport org. apache. kaf ka. coomon. security. auth. SecurityProtocol;

/**

* Represents a broker endpoint.
*/

@nterfaceStability. Evol ving
public class Endpoint {

private final String |istenerNang;

private final SecurityProtocol securityProtocol;
private final String host;

private final int port;

public Endpoint(String |istenerNane, SecurityProtocol securityProtocol, String host, int port) {
this.listenerNane = |i st ener Nane;
this.securityProtocol = securityProtocol;

t hi s. host host ;
this.port = port;

}

/**
* Returns the listener name of this endpoint. This is non-enpty for endpoints provided
* to broker plugins, but nmay be enpty when used in clients.
*/
public Optional <String> |istenerName() {
return Optional.of Null abl e(listenerNane);

}

/**
* Returns the security protocol of this endpoint.
*/
public SecurityProtocol securityProtocol () {
return securityProtocol;

}

/*-k
* Returns advertised host nane of this endpoint.
*/
public String host() {
return host;

}

/**
* Returns the port to which the listener is bound.
*/
public int port() {
return port;

}

@verride
public bool ean equal s(Object 0) {
if (this == 0) {
return true;
}
if (!(o instanceof Endpoint)) {
return false;

}

Endpoi nt that = (Endpoint) o;

return Oojects.equal s(this.listenerNane, that.|istenerName) &&
oj ect s. equal s(this.securityProtocol, that.securityProtocol) &&
oj ect s. equal s(this.host, that.host) &&
this.port == that.port;

}

@verride
public int hashCode() {
return Cbjects. hash(listenerNane, securityProtocol, host, port);

}

@verride
public String toString() {
return "Endpoint(" +
"listenerName="" + listenerNane + '\'' +
", securityProtocol =" + securityProtocol +
, host="" + host + '\'' +
", port=" + port +

)

Acti on provides details of the action being authorized including resource and operation. Additional context including audit flag indicating authorization
usage are also included, enabling access violation to be distinguished from resource filtering or optional ACLs.

Authorizable Action

package org. apache. kaf ka. server. aut hori zer;

import java.util.Qbjects;

i nport org. apache. kaf ka. cormon. acl . Acl Oper ati on;

i mport org. apache. kaf ka. cormon. annot ati on. I nterfaceStability;
i nport org. apache. kaf ka. conmon. resour ce. Pat t er nType,;

i nport org. apache. kaf ka. conmon. r esour ce. Resour cePatt ern;

i mport org. apache. kaf ka. common. r esour ce. Resour ceType;

@nterfaceStability. Evol ving
public class Action {

private final ResourcePattern resourcePattern;
private final Acl Operation operation;

private final int resourceReferenceCount;
private final bool ean |oglfAllowed;

private final bool ean | oglfDenied;

public Action(Acl Operation operation,
ResourcePattern resourcePattern,
int resourceReferenceCount,
bool ean | ogl f Al | owed,
bool ean | ogl f Deni ed) {
this.operation = operation;
this.resourcePattern = resourcePattern;
this.loglfA lowed = | oglfAllowed;
this.loglfDenied = |oglfDenied,
t hi s. resourceRef erenceCount = resourceReferenceCount;

}

/**

* Resource on which action is being perforned.

*/

public ResourcePattern resourcePattern() {
return resourcePattern;

}

/**

* (Operation being perforned.

*/

public Acl Operation operation() {
return operation;

}

* Indicates if audit |ogs tracking ALLOWED access should include this action if result is
* ALLONED. The flag is true if access to a resource is granted while processing the request as a
* result of this authorization. The flag is false only for requests used to describe access where
* no operation on the resource is actually perforned based on the authorization result.
*/
public bool ean | oglfAllowed() {

return | oglfAllowed;

}

/**

* Indicates if audit |ogs tracking DEN ED access should include this action if result is

* DENIED. The flag is true if access to a resource was explicitly requested and request

* is denied as a result of this authorization request. The flag is false if request was

* filtering out authorized resources (e.g. to subscribe to regex pattern). The flag is al so

* false if this is an optional authorization where an alternative resource authorization is

* applied if this fails (e.g. Cluster:Create which is subsequently overridden by Topic: Create).
*/

publ i c bool ean | ogl f Deni ed() {

return | oglf Deni ed;
}

/*-k
* Nunber of tines the resource being authorized is referenced within the request. For exanple, a single
* request nmay reference "n° topic partitions of the same topic. Brokers will authorize the topic once
* with “resourceReferenceCount=n". Authorizers may include the count in audit |ogs.
*/
public int resourceReferenceCount() {
return resourceRef erenceCount;

}

@verride
publ i c bool ean equal s(Obj ect o) {
if (this == 0) {
return true;
}
if (!(o instanceof Action)) {
return fal se;

}

Action that = (Action) o;
return Cbjects. equal s(this.resourcePattern, that.resourcePattern) &&

oj ect s. equal s(this.operation, that.operation) &%
t hi s. resourceRef erenceCount == that.resourceRef erenceCount &&

this.loglfAl lowed == that.loglfAllowed &&
this.loglfDenied == that. | oglfDenied,

}

@verride
public int hashCode() {
return Oojects. hash(resourcePattern, operation, resourceReferenceCount, |oglfAllowed, |oglfDenied);

}

@verride
public String toString() {
return "Action(" +

", resourcePattern='" + resourcePattern + '\'' +
", operation="" + operation + '"\'' +
resour ceRef erenceCount =' " + resour ceRef erenceCount + '\'' +

i

", loglfAllowed="" + loglfAllowed + "\'' +

1

", loglfDenied="" + loglfDenied + '\'' +

)

Authorize method returns individual allowed/denied results for every action.

Authorizer Operation Results
package org. apache. kaf ka. server. aut hori zer;
public enum Aut hori zati onResult {

ALLOVED,
DENI ED

ACL create operation returns any exception from each ACL binding requested.

Authorizer Operation Results

package org. apache. kaf ka. server. aut hori zer;

import java.util.Optional;

i nport
i mport

or g. apache. kaf ka. conmon. annot ati on. I nterfaceStability;
or g. apache. kaf ka. cormon. errors. Api Excepti on;

@nterfaceStability. Evol ving
public class Acl CreateResult {
public static final AclCreateResult SUCCESS = new Acl CreateResult();

private final Api Exception exception;

private Acl CreateResult() {

}

this(null);

public Acl CreateResult (Api Exception exception) {

}

| **

this. exception = exception;

* Returns any exception during create. |If exception is enpty, the request has succeeded.

*/

public Optional <Api Excepti on> exception() {

}

return exception == null ? Optional.enpty() : Optional.of(exception);

ACL delete operation returns any exception from each ACL filter requested. Matching ACL bindings for each filter are returned along with any delete failure.

Delete Results

package org. apache. kaf ka. server. aut hori zer;

i mport
i nport
i mport
i nport
i mport
i mport

java.util.Collections;

java.util.Collection;

java.util.Optional;

or g. apache. kaf ka. conmon. acl . Acl Bi ndi ng;

or g. apache. kaf ka. cormon. annot ati on. I nterfaceStability;
or g. apache. kaf ka. common. errors. Api Excepti on;

@nterfaceStability. Evol ving
public class Acl Del eteResult {
private final ApiException exception;
private final Collection<AclBi ndi ngDel et eResul t > acl Bi ndi ngDel et eResul ts;

public Acl Del et eResul t (Api Exception exception) {

}

thi s(Col | ections. enptySet (), exception);

public Acl Del et eResul t (Col | ecti on<Acl Bi ndi ngDel et eResul t > del eteResults) {

}

thi s(del eteResults, null);

private Acl Del et eResul t (Col | ecti on<Acl Bi ndi ngDel et eResul t > del et eResul ts, Api Exception exception) {

}

t hi s. acl Bi ndi ngDel et eResults = del eteResul ts;
this. exception = exception;

/*-k

* Returns any exception while attenpting to match ACL filter to delete ACLs.
*/

public Optional <Api Excepti on> exception() {

return exception == null ? Optional.enpty() : Optional.of(exception);

}

/*-k
* Returns delete result for each matching ACL bi nding.
*/
public Collection<Acl Bi ndi ngDel et eResul t > acl Bi ndi ngDel et eResul ts() {
return acl Bi ndi ngDel et eResul ts;

}

/*-k
* Delete result for each ACL binding that matched a delete filter.
*/
public static class AclBindingDel eteResult {
private final AclBinding acl Bi nding;
private final ApiException exception;

publ i ¢ Acl Bi ndi ngDel et eResul t (Acl Bi ndi ng acl Bi ndi ng) {
thi s(acl Binding, null);
}

publ i c Acl Bi ndi ngDel et eResul t (Acl Bi ndi ng acl Bi ndi ng, Api Exception exception) {
t hi s. acl Bi ndi ng = acl Bi ndi ng;
this. exception = exception;

}

/*-k
* Returns ACL binding that matched the delete filter. {@ink #deleted()} indicates if
* the binding was del eted.
*/
public Acl Bi ndi ng acl Bi ndi ng() {
return acl Bi ndi ng;

}

/*-k
* Returns any exception that resulted in failure to delete ACL binding.
*/
public Optional <Api Excepti on> exception() {
return exception == null ? Optional.enpty() : Optional.of(exception);

}

Proposed Changes

Asynchronous update requests

kaf ka. server. Kaf kaApi s will be updated to handle Cr eat eAcl s and Del et eAcl s requests asynchronously using a purgatory. If Aut hori zer.
creat eAcl s or Aut hori zer . del et eAcl s returns any Conpl et ti onSt age that is not complete, the request will be added to a purgatory and
completed when all the stages complete. Authorizer implementations with low latency updates may continue to update synchronously and return a
completed future. These requests will be completed in-line and will not be added to the purgatory.

Asynchronous updates are useful for Authorizer implementations that use external stores for ACLs, for example a database. Async handling of update
requests will enable Kafka brokers to handle database outages without blocking request threads. As many databases now support async APIs (https://dev.
mysql.com/doc/x-devapi-userguide/en/synchronous-vs-asynchronous-execution.html, https://blogs.oracle.com/java/jdbc-next:-a-new-asynchronous-api-for-
connecting-to-a-database), async update API enables authorizers to take advantage of these APIs.

Purgatory metrics will be added for ACL updates, consistent with metrics from other purgatories. Two new metrics will be added:

® kafka. server:type=Del ayedOper at i onPur gat or y, nanme=NunDel ayedQper at i ons, del ayedOper ati on=acl - updat e
® kaf ka. server:type=Del ayedOper at i onPur gat ory, nane=Pur gat or ySi ze, del ayedQper at i on=acl - updat e

In addition to these metrics, existing request metrics for Cr eat eAcl s and Del et eAcl s can be used to track the portion of time spent on async operations
since local time is updated before the async wait and remote time is updated when async wait completes:

® kaf ka. net wor k: t ype=Request Met ri cs, nane=Local Ti neMs, r equest =Cr eat eAcl s
¢ kaf ka. net wor k: t ype=Request Met ri cs, name=Renpt eTi neMs, r equest =Cr eat eAcl s

https://dev.mysql.com/doc/x-devapi-userguide/en/synchronous-vs-asynchronous-execution.html
https://dev.mysql.com/doc/x-devapi-userguide/en/synchronous-vs-asynchronous-execution.html
https://blogs.oracle.com/java/jdbc-next:-a-new-asynchronous-api-for-connecting-to-a-database
https://blogs.oracle.com/java/jdbc-next:-a-new-asynchronous-api-for-connecting-to-a-database

® kaf ka. net wor k: t ype=Request Met ri cs, nane=Local Ti neMs, r equest =Del et eAcl s
® kaf ka. net wor k: t ype=Request Met ri cs, name=Renot eTi neMs, r equest =Del et eAcl s
Deprecate existing Scala Authorizer Trait
kaf ka. security. aut h. Aut hori zer will be deprecated along with all the supporting Scala classes including Resource, Operations and

ResourceTypes. A new Aut hor i zer W apper class will be introduced to wrap implementations using the Scala trait into the new Java interface. All usage
of Authorizer (e.g. in Kaf kaApi s) will be replaced with the new authorizer interface.

AclAuthorizer

A new authorizer implementation will be added. kaf ka. security. aut hori zer. Acl Aut hori zer will implement the new interface, making use of the
additional request context available to improve authorization logging. This authorizer will be compatible with Si npl eAcl Aut hori zer and will support all
its existing configs including super . users.

SimpleAclAuthorizer

Si npl eAcl Aut hori zer will be deprecated, but we will continue to support this implementation using the old API. Since it is part of the public API, all its

public methods will be retained without change. This enables existing custom implementations that rely on this class to continue to be used.

Optional Interfaces

Reconfigurable
kaf ka. server. Dynam cBr oker Conf i g will be updated to support dynamic update of authorizers which implement or g. apache. kaf ka. conmon.

Reconf i gur abl e. Authorizer implementations can react to dynamic updates of any of its configs including custom configs, avoiding broker restarts to
update configs.

Compatibility, Deprecation, and Migration Plan

What impact (if any) will there be on existing users?

Existing authorizer interfaces and classes are being deprecated, but not removed. We will continue to support the same config with the old API to ensure
that existing users are not impacted.

If we are changing behavior how will we phase out the older behavior?

We are deprecating the existing Scala authorizer API. These will be removed in a future release, but will continue to be supported for backward
compatibility until then. Until the old authorizer is removed, no config changes are required during upgrade.

Test Plan

All the existing integration and system tests will be updated to use the new config and the new authorization class. Unit tests will be added for testing the
new methods and parameters being introduced in this KIP. An additional integration test will be added to test authorizers using the old Scala API.

Rejected Alternatives

Description of Authorizer as proposed in KIP-50

KIP-50 proposes to return a textual description of the authorizer that can be used in tools like Acl Conmand. Since we don't support returning a description
using Admi nd i ent and none of the other pluggable APIs have similar support, this KIP does not add a method to return authorizer description.
Separate authorizers for each listener

In some environments, authorization decisions may be dependent on the security protocol used by the client or the listener on which the request was
received. We have listener prefixed configs to enable independent listener-specific configs for authentication etc. But since authorizers tend to cache a lot

of metadata and need to watch for changes in metadata, a single shared instance works better for authorization. This KIP proposes a single authorizer that
can use listener and security protocol provided in the authorization context to include listener-specific authorization logic.

Extend SimpleAclAuthorizer to support the new API

Si npl eAcl Aut hor i zer is part of our public API since it is in the public package kaf ka. securi ty. aut h. So we need to ensure that the old APl is
used with this authorizer if custom implementations extend this class and override specific methods. So this KIP deprecates, but retains this
implementation and adds a separate implementation that uses the new API.

Make authorize() asynchronous

Authorize operations in the existing Aut hor i zer are synchronous and this KIP proposes to continue to authorize synchronously on the request thread
while processing each request. This requires all ACLs to be cached in every broker to avoid blocking request threads during authorization. To improve
scalability in future, we may want to support asynchronous authorize operations that may perform remote communication, for example with an LRU cache.
But asynchronous authorize operations add complexity to the Kafka implementation. Even though we may be able to use the existing purgatory, additional
design work is required to figure out how this can be implemented efficiently. So it was decided that we should keep the authorization API synchronous for
now. In future, we can add async authorize as a new method on the API if required.

	KIP-504 - Add new Java Authorizer Interface

