
KIP-516: Topic Identifiers

Status
Motivation
Public Interfaces

Uuid
Protocol Changes

Removal of Topic Names from Request and Responses
LeaderAndIsr

LeaderAndIsrRequest v5
Deletion
LeaderAndIsrResponse v5

StopReplica
StopReplicaRequest v4
StopReplicaResponse v4

Fetch
FetchRequest v13
FetchResponse v13

ListOffsets
ListOffsetRequest v6
ListOffsetResponse v6

OffsetForLeader
OffsetForLeaderRequest v4
OffsetForLeaderResponse v4

UpdateMetadata
UpdateMetadataRequest v7

Produce
ProduceRequest v9
ProduceResponse v9

DeleteTopics
Immediate delete scenarios

Storage
Partition Metadata file

Tooling
Configuration
AdminClient Support

TopicCollection
CreateTopics

CreateTopicsResult
CreateTopicsResponse v7

Describe Topics
TopicDescription
MetadataResponse v10
Admin and KafkaAdminClient
MetadataRequest v10

DeleteTopics
Admin and KafkaAdminClient
DeleteTopicsRequest v6
DeleteTopicsResponse v6

Compatibility with KIP-500
Sentinel ID
LeaderAndIsr, UpdateMetadata, and StopReplica
Vote

VoteRequest v0
VoteResponse v0

BeginQuorumEpoch
BeginQuorumEpochRequest v0
BeginQuorumEpochResponse v0

EndQuorumEpoch
EndQuorumEpochRequest v0
EndQuorumEpochResponse v0

log.dir layout
Migration
Sequence ID
Topic Deletion

Best Effort Strategy
Send StopReplicaRequest(s) to online brokers only

org.apache.kafka.common.TopicPartition
Persisting Topic IDs

Future Work
Requests
AdminClient
Clients
__consumer_offsets topic
Security/Authorization
TopicIdPartition

1.

2.

3.

4.

Status
Current state: Accepted

Discussion thread: https://lists.apache.org/thread.html/7efa8cd169cadc7dc9cf86a7c0dbbab1836ddb5024d310fcebacf80c@%3Cdev.kafka.apache.org%
3E

JIRA: - KAFKA-8872 Getting issue details... STATUS

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Today, Kafka uniquely identifies a topic by its name. This is generally sufficient however there are flaws with this scheme when a topic is deleted and
recreated with the same name. Kafka currently attempts to prevent issues resulting from stale topics by ensuring a topic is fully deleted from all replicas
before completing a deletion. This solution is imperfect, as it is possible for partitions to be reassigned away from brokers while they are down and there
are no guarantees that this state will ever be cleaned up.

When a topic deletion is performed the controller must wait for all brokers to delete their local replicas. This blocks creation of a topic with the same name
as a deleted topic until all replicas have successfully deleted the topic's data. This can mean that downtime for a single broker can effectively cause a
complete outage for everyone producing/consuming to that topic name if a topic cannot be recreated without manual intervention.

Topic IDs aim to address this issue by associating a truly unique ID with each topic, ensuring a newly created topic with a previously used name cannot be
confused with a previous topic with that name.

Topic IDs solve several additional problems:

Renaming topics becomes feasible (although there may still be some complexity with the need to support the old name for a while as part of
migration, etc.) Renaming topics may seem minor, but it will be difficult to have hierarchical topics without having some kind of renaming support.
We can eventually get rid of the "deleting" state for topics. If a broker is down but there is some topic data there that is no longer relevant, it won't
cause problems later on. It can be deleted when the broker rejoins the cluster and realizes that the relevant topic ID is not present any more. We
gain some additional safety where stale/deleted replicas may currently interact with live ones.
Sending 16 byte UUIDs instead of Strings over Kafka RPCs can be smaller. A string is 2 bytes plus the data, whereas the UUID is fixed 16 bytes.
For any topic name with more than than 14 single byte characters (16 bytes serialized), UUIDs will be smaller. They will also be faster to compare
and more friendly to the garbage collector.
They will provide a true measure of topic uniqueness across clusters. This may be important in multi-cluster Kafka deployments where additional
safety and debuggability is desired.

Overall, topic IDs provide a safer way for brokers to replicate topics without any chance of incorrectly interacting with stale topics with the same name. By
preventing such scenarios, we can simplify a number of other interactions such as topic deletes which are currently more complicated and problematic
than necessary.

Public Interfaces

Uuid

A new Uuid class will be exposed under /org/apache/kafka/common

https://lists.apache.org/thread.html/7efa8cd169cadc7dc9cf86a7c0dbbab1836ddb5024d310fcebacf80c@%3Cdev.kafka.apache.org%3E
https://lists.apache.org/thread.html/7efa8cd169cadc7dc9cf86a7c0dbbab1836ddb5024d310fcebacf80c@%3Cdev.kafka.apache.org%3E
https://issues.apache.org/jira/browse/KAFKA-8872

/*
 * This class defines an immutable universally unique identifier (Uuid). It represents a 128-bit value.
 * More specifically, the random Uuids in this class are variant 2 (Leach-Salz) version 4 Uuids.
 * This definition is very similar to java.util.UUID. The toString() method prints
 * using the base64 string encoding. Likewise, the fromString method expects a base64 string encoding.
 */
public class Uuid {

 /**
 * A Uuid where all bits are zero. It represents a null or empty Uuid.
 */
 public static final Uuid ZERO_UUID

 /**
 * Constructs a 128-bit type 4 Uuid where the first long represents the the most significant 64 bits
 * and the second long represents the least significant 64 bits.
 */
 public Uuid(long mostSigBits, long leastSigBits)

 /**
 * Static factory to retrieve a type 4 (pseudo randomly generated) Uuid.
 */
 public static Uuid randomUuid()

 /**
 * Returns the most significant bits of the Uuid's 128 bit value.
 */
 public long getMostSignificantBits()

 /**
 * Returns the least significant bits of the Uuid's 128 bit value.
 */
 public long getLeastSignificantBits()

 /**
 * Returns true iff the obj is another Uuid with the same value.
 */
 public boolean equals(Object obj)

 /**
 * Returns a hash code for this Uuid
 */
 public int hashCode()

 /**
 * Returns a base64 string encoding of the Uuid.
 */
 public String toString()

 /**
 * Creates a Uuid based on a base64 string encoding used in the toString() method.
 */
 public static Uuid fromString(String str)

}

Some public api will be added to org.apache.kafka.common.Cluster

/**
* An immutable representation of a subset of the nodes, topics, and partitions in the Kafka cluster.
*/
public class Cluster {

 /**
 * Get All topicIds in the cluster, similar to topics()
 */
 public Collection<Uuid> topicIds()

 /**
 * Get the topicId of a topic, Uuid.ZERO_UUID is returned topicId doesn't exists.
 */
 public Uuid topicId(String topic)

}

Additionally, it may be dangerous to use older versions of Kafka tools with new broker versions when using their flags. Use of older tools in --zookeeper
this way is not supported today.

Proposed Changes
Topic IDs will be represented with 128 bit v4 UUIDs. A UUID with all bits as 0 will be reserved as a null UUID as the Kafka RPC protocol does not allow for
nullable fields. When printed or stored as a string, topic IDs will be converted to base64 string representation.

On handling a CreateTopicRequest brokers will create the topic znode under as usual. /brokers/topics/[topic],

The znode value will now contain an additional topic ID field, represented as a base64 string in the " field, and the schema version will be bumped to id"
version 3.

Schema:
{ "fields" :
 [{"name": "version", "type": "int", "doc": "version id},

}, {"name": "id", "type": "string", "doc": option[Uuid]
 {"name": "partitions",
 "type": {"type": "map",
 "values": {"type": "array", "items": "int", "doc": "a list of replica ids"},
 "doc": "a map from partition id to replica list"},

 {"name": " ",adding_replicas
 "type": {"type": "map",
 "values": {"type": "array", "items": "int", "doc": "a list of replica ids"},
 "doc": "a map from partition id to a list of replicas to add in a pending reassignment"},

 {"name": "r ",emoving_replicas
 "type": {"type": "map",
 "values": {"type": "array", "items": "int", "doc": "a list of replica ids"},
 "doc": "a map from partition id to a list of replicas to remove in a pending reassignment"},
 }
]
}

Example:
{
 "version": 3,
 "id": " ",b8tRS7h4TJ2Vt43Dp85v2A
 "partitions": {"0": [0, 1, 3] },
 "adding_replicas": {},
 "removing_replicas": {}
}

The controller will maintain local in-memory state containing a mapping from topic name to topic ID. On controller startup, the topic ID will automatically be
loaded into memory along with the topics and partitions. A random UUID will be generated on topic creation or on migration of an existing topic without
topic IDs.

The controller will supply topic IDs for all topic partitions to brokers by sending LeaderAndIsrRequest(s) that contain the topic IDs for all partitions
contained in the request.

Requests to describe topics will return a result containing TopicDescriptions with topic IDs for each topic

Protocol Changes

Removal of Topic Names from Request and Responses

It is unnecessary to include the name of the topic in the following Request/Response calls:
LeaderAndIsr (Response only)
StopReplica
Fetch
List Offsets
OffsetForLeader
Produce
Vote
BeginQuorumEpoch
EndQuorumEpoch

Including the topic name in the request may make it easier to debug when issues arise, as it will provide more information than the topic ID alone.
However, it will also bloat the protocol (especially relevant for FetchRequest), and if they are incorrectly used it may prevent topic renames from being
easily implemented in the future. For these reasons, the topic name field has been removed.

LeaderAndIsr

LeaderAndIsrRequest v5

1.
2.
3.

LeaderAndIsr Request (Version: 5) => controller_id controller_epoch broker_epoch type* [topic_states]
[live_leaders]
 controller_id => INT32
 controller_epoch => INT32
 broker_epoch => INT64
 type* => INT8
 topic_states => topic topic_id* [partition_states]
 topic => STRING
 topic_id* => UUID
 partition_states => partition controller_epoch leader leader_epoch [isr] zk_version [replicas] is_new
 partition => INT32
 controller_epoch => INT32
 leader => INT32
 leader_epoch => INT32
 isr => INT32
 zk_version => INT32
 replicas => INT32
 is_new => BOOLEAN
 live_leaders => id host port
 id => INT32
 host => STRING
 port => INT32

LeaderAndIsrRequest v5 adds the topic ID to the topic_states field, and an enum to denote the type of LeaderAndIsrRequest. Currently, the first type
LeaderAndIsrRequest sent to a broker by a controller contains all TopicPartitions that a broker is a replica for. We will formalize this behavior by also
including a enum to denote the type of LeaderAndIsrRequest. IBP will be used to determine whether this new form of the request will be used. For type
older requests, we will ignore this field and default to previous behavior.

value enum description

1 INCREMENTAL A LeaderAndIsrRequest that is not guaranteed to contain all topic partitions assigned to a broker.

2 FULL A full LeaderAndIsrRequest containing all partitions the broker is a replica for.

When , the broker is able to reconcile its local state on disk with the request. Any partition not contained in this request and present on local type = FULL
disk can be staged for deletion. There are two such types of stale request. In both cases the broker's topic will be staged for deletion.

1. The TopicPartition is not present in the LeaderAndIsrRequest.

2. The TopicPartition is contained in the request, but the topic ID that does not match the local topic partition stored on the broker.

Reconciliation may also be necessary if and the topic ID set on a local partition does not match the topic ID contained in the type = INCREMENTAL
request. A TopicPartition with the same name and a different topic ID by implies that the local topic partition is stale, as the topic must have been deleted
to create a new topic with a different topic ID. This is similar to the type 2 stale request above, and the topic will be staged for deletion.

In the case where the topic ID in the request does not match the topic ID in the log (in either FULL or INCREMENTAL requests), we will also return a new
exception .INCONSISTENT_TOPIC_ID
This exception will be used for when the topic ID in memory does not match the topic ID in the request.

Deletion

Deletion of stale partitions triggered by LeaderAndIsrRequest(s) will take place by:

Logging at WARN level all partitions that will be deleted and the time that they will be be deleted at.
Move the partition's directory to log.dir/deleting/{topic_id}_{partition}
Schedule deletion from disk with a delay of ms. This will clear the directory of the partition's contents.delete.topic.delay.ms deleting

LeaderAndIsrResponse v5

LeaderAndIsr Response (Version: 5) => error_code [topics]
 error_code => INT16
 topics => topic_id* [partitions]
 topic_id* => UUID
 partitions => partition error_code
 partition => INT32
 error_code => INT16

The topic name field has been removed.

StopReplica

StopReplicaRequest v4

StopReplica Request (Version: 4) => controller_id controller_epoch broker_epoch delete_partitions [topic_states]
 controller_id => INT32
 controller_epoch => INT32
 broker_epoch => INT64
 delete_partitions => BOOLEAN
 topic_states => topic_id* [partitions_states]
 topic_id* => UUID
 partition_states => partition_id leader_epoch delete_partition
 partition_id => INT32
 leader_epoch => INT32
 delete_parition => BOOLEAN

StopReplicaResponse v4

StopReplica Response (Version: 4) => error_code [topics]
 error_code => INT16
 topics => topic_id* [partitions]
 topic_id* => UUID
 partitions => partition error_code
 partition => INT32
 error_code => INT16

Fetch

To avoid issues where requests are made to stale partitions, a topic_id field will be added to fence reads from deleted topics. Note that the leader epoch is
not sufficient for preventing these issues, as the partition leader epoch is reset when a topic is deleted and recreated. To reduce the size of the request
and response, the topic name field has been removed.

FetchRequest v13

Fetch Request (Version: 13) => replica_id max_wait_time min_bytes max_bytes isolation_level session_id
session_epoch [topics] [forgotten_topics_data] rack_id
 replica_id => INT32
 max_wait_time => INT32
 min_bytes => INT32
 max_bytes => INT32
 isolation_level => INT8
 session_id => INT32
 session_epoch => INT32
 topics => topic_id* [partitions]
 topic_id* => UUID
 partitions => partition current_leader_epoch fetch_offset last_fetched_epoch log_start_offset
partition_max_bytes
 partition => INT32
 current_leader_epoch => INT32
 fetch_offset => INT64
 last_fetched_epoch => INT32
 log_start_offset => INT64
 partition_max_bytes => INT32
 forgotten_topics_data => topic_id* [partitions]
 topic_id* => UUID
 partitions => INT32
 rack_id => STRING

FetchResponse v13

Fetch Response (Version: 13) => throttle_time_ms error_code session_id [responses]
 throttle_time_ms => INT32
 error_code => INT16
 session_id => INT32
 responses => topic_id* [partition_responses]
 topic_id* => UUID
 partition_responses => partition error_code high_watermark last_stable_offset log_start_offset
diverging_epoch current_leader [aborted_transactions] preferred_read_replica record_set
 partition => INT32
 error_code => INT16
 high_watermark => INT64
 last_stable_offset => INT64
 log_start_offset => INT64
 diverging_epoch => epoch end_offset
 epoch => INT32
 end_offset => INT64
 current_leader => leader_id leader_epoch
 leader_id => INT32
 leader_epoch => INT32
 aborted_transactions => producer_id first_offset
 producer_id => INT64
 first_offset => INT64
 preferred_read_replica => INT32
 record_set => RECORDS

ListOffsets

To avoid issues where requests are made to stale partitions, a topic_id field will be added to fence reads from deleted topics.

ListOffsetRequest v6

ListOffset Request (Version: 6) => replica_id isolation_level [topics]
 replica_id => INT32
 isolation_level => INT8
 topics => topic_id* [partitions]
 topic_id* => UUID
 partitions => partition current_leader_epoch timestamp
 partition => INT32
 current_leader_epoch => INT32
 timestamp => INT64

ListOffsetResponse v6

ListOffset Response (Version: 6) => throttle_time_ms [responses]
 throttle_time_ms => INT32
 responses => topic_id* [partition_responses]
 topic_id* => UUID
 partition_responses => partition error_code timestamp offset leader_epoch
 partition => INT32
 error_code => INT16
 timestamp => INT64
 offset => INT64
 leader_epoch => INT32

OffsetForLeader

To avoid issues where requests are made to stale partitions, a topic_id field will be added to fence reads from deleted topics.

OffsetForLeaderRequest v4

OffsetForLeaderEpoch Request (Version: 4) => replica_id [topics]
 replica_id => INT32
 topics => topic_id* [partitions]
 topic_id* => UUID
 partitions => partition current_leader_epoch leader_epoch
 partition => INT32
 current_leader_epoch => INT32
 leader_epoch => INT32

OffsetForLeaderResponse v4

OffsetForLeaderEpoch Response (Version: 4) => throttle_time_ms [topics]
 throttle_time_ms => INT32
 topics => topic_id* [partitions]
 topic_id* => UUID
 partitions => error_code partition leader_epoch end_offset
 error_code => INT16
 partition => INT32
 leader_epoch => INT32
 end_offset => INT64

UpdateMetadata

UpdateMetadata should also include the topic ID.

UpdateMetadataRequest v7

UpdateMetadata Request (Version: 7) => controller_id controller_epoch broker_epoch [ungrouped_partition_states]
[topic_states] [live_brokers]
 controller_id => INT32
 controller_epoch => INT32
 broker_epoch => INT64
 ungrouped_partition_states => UpdateMetadataPartitionState
 topic_states => topic_name topic_id* [partition_states]
 topic_name => STRING
 topic_id* => UUID
 partition_states => UpdateMetadataPartitionState
 live_brokers => id v0_host v0_port [endpoints] rack
 id => INT32
 v0_host => STRING
 v0_port => INT32
 endpoints => port host listener security_protocol
 port => INT32
 host => STRING
 listener => STRING
 security_protocol => INT16
 rack => STRING

Produce

Swapping a the topic name for the topic ID will cut down on the size of the request.

 ProduceRequest v9

Produce Request (Version 9) => transactional_id acks timeout_ms [topics]
 transactional_id => STRING
 acks => INT16
 timeout_ms => INT32
 topics => topic_id* [partitions]
 topic_id* => UUID
 partitions => partition_index records
 partition_index => INT32
 records => BYTES

ProduceResponse v9

Produce Response (Version 9) => [responses] throttle_time_ms
 responses => topic_id* [partitions]
 topic_id* => UUID
 partitions => partition_index error_code base_offset log_append_time_ms log_start_offset
[record_errors] error_message
 partition_index => INT32
 error_code => INT16
 base_offset => INT64
 log_append_time_ms => INT64
 log_start_offset => INT64
 record_errors => batch_index batch_index_error_message
 batch_index => INT32
 batch_index_error_message => STRING
 error_message => STRING
 throttle_time_ms => INT32

1.
a.
b.

2.

3.
a.

b.
4.

1.
2.
3.
4.
5.

1.
2.
3.
4.
5.

DeleteTopics

With the addition of topic IDs and the changes to LeaderAndIsrRequest described above, we can now make changes to topic deletion logic that will allow
topics to be immediately considered deleted, regardless of whether all replicas have responded to a DeleteTopicsRequest.

When the controller receives a DeleteTopicsRequest, if the IBP is >= MIN_TOPIC_ID_VERSION it will delete the znode payload and /brokers/topics/[topic]
immediately reply to the DeleteTopicsRequest with a successful response. At this point, the topic is considered deleted, and a topic with the same name
can be created.

Although the topic is safely deleted at this point, it must still be garbage collected. To garbage collect, the controller will then send StopReplicaRequest(s)
to all brokers assigned as replicas for the deleted topic. For the most part, deletion logic can be maintained between IBP versions, with some differences in
responses and cleanup in ZooKeeper. Both formats must still be supported, as the IBP may not be bumped right away and deletes may have already been
staged before the IBP bump occurs.

The updated controller's delete logic will:

Collect deleted topics:
Old format: pulling the topic state from . /admin/delete_topics /brokers/topics/[topic]
New in-memory topic deletion states from received DeleteTopicsRequest(s)

Remove deleted topics from replicas by sending StopReplicaRequest V3 before the IBP bump using the old logic, and using V4 and the new logic
with topic IDs after the IBP bump.
Finalize successful deletes:

For deletes, we may need to respond to the TopicDeleteRequest. We can also delete the topic znode at /admin/delete_topics /admin
 and ./delete_topics/[topic] /brokers/topics/[topic]

For deletes for topics with topic IDs, remove the topic from the in memory topic deletion state on the controller.
Any unsuccessful StopReplicaRequest(s) will be retried after retryMs, starting from 1) and will be maintained in memory.

This leads to the question of what should be done if the controller never receives a successful response from a replica for a StopReplicaRequest. Under
such a scenario it is still safe to stop retrying after a reasonable number of retries and time. Given that LeaderAndIsrRequest v5 includes a flag, type
allowing for requests to be identified, any stale partitions will be reconciled and deleted by a broker on startup upon receiving the initial FULL
LeaderAndIsrRequest from the a controller. This condition is also safe if the controller changes before the StopReplicaRequest(s) succeed, as the new
controller will send a LeaderAndIsrRequest on becoming the leader, ensuring that any stale partitions are cleaned up.FULL

Immediate delete scenarios

Stale reads

Broker B1 is a leader for topic partition A_p0_id0
Topic A id0 is deleted.
Topic A id1 is created.
Broker B1 has not yet received a new LeaderAndIsrRequest, nor a StopReplicaRequest for topic partition A_p0_id0
Broker B2 has received a LeaderAndIsrRequest for topic partition A_p0 _id0, and starts fetching from B1.

Inclusion of topic IDs in FetchRequest/ListOffsetRequest/OffsetsForLeaderEpochRequest(s) ensure that this scenario is safe. By adding the topic ID to
these request types, any request to stale partitions will not be successful.

Stale state

Broker B1 is a replica for A_p0_id0.
Topic A id0 is deleted.
B1 and has not does not receive a StopReplicaRequest for A_p0_id0.
Topic A id1 is created.
Broker B1 receives a LeaderAndIsrRequest containing partition A_p0_id1.

When this occurs, we will close the Log for A_p0_id0, and move A_p0_id0 to the directory as described in the LeaderAndIsrRequest description deleting
above.

Storage

Partition Metadata file

To allow brokers to resolve the topic name under this structure, a metadata file will be created at . logdir/partitiondir/partition.metadata

This metadata file will be human readable, and will include:

Metadata schema version (schema_version: int32)
Topic ID (id: Uuid)

This file will be plain text (key/value pairs).

version: 0

topic_id: 46bdb63f9e8d4a38bf7bee4eb2a794e4

One important use for this file is the current directory structure does not allow us to reload the broker's view of topic ID on startup (perhaps after a failure).
It is necessary to persist this file to disk so this information can be reloaded.

It will be easy to update the file to include more fields in the future. This may assist with tooling purposes like mapping topic IDs to topic names.

In the JBOD mode, a partition's data can be moved from one disk to another. The partition metadata file would be copied during this process.

Tooling

kafka-topics.sh --describe will be updated to include the topic ID in the output. A user can specify a topic name to describe with the --topic parameter, or
alternatively the user can supply a topic ID with the --topic_id parameter

Configuration

The following configuration options will be added:

Option Unit Default Description

delete.topic.delay.ms ms 14400 (4 hours) The minimum amount of time to wait before removing a deleted topic's data on every broker

AdminClient Support

Access to topic IDs from the AdminClient will make it easier for users to obtain topics' topic IDs. It can also ensure correctness when deleting topics. This
will require some changes to public APIs and protocols

TopicCollection

One change to help with the transition from defining topics by names to defining them by IDs is a new class that can represent a collection of topics by
name or ID. This class can be passed in to methods that support identifying topics by either identifier–like describe and delete below. This will be found in
the common package.

/**
 * A class used to represent a collection of topics. This collection may define topics by topic name
 * or topic ID. Subclassing this class beyond the classes provided here is not supported.
 */
public abstract class TopicCollection {

 () {}private TopicCollection

 /**
 * @return a collection of topics defined by topic ID
 */

TopicIdCollection (Collection<Uuid> topics); public static ofTopicIds

 /**
 * @return a collection of topics defined by topic name
 */

TopicNameCollection (Collection<String> topics); public static ofTopicNames

 /**
 * A class used to represent a collection of topics defined by their topic ID.
 * Subclassing this class beyond the classes provided here is not supported.
 */

TopicIdCollection TopicCollection { public static class extends

 /**
 * @return A collection of topic IDs
 */

Collection<Uuid> (); public topicIds
 }

 /**
 * A class used to represent a collection of topics defined by their topic name.
 * Subclassing this class beyond the classes provided here is not supported.
 */

TopicNameCollection TopicCollection { public static class extends

 /**
 * @return A collection of topic names
 */

Collection<String> (); public topicNames
 }

http://delete.stale.topic.delay.ms

}

CreateTopics

Upon creation of a topic, the topic ID will be included in the TopicMetadataAndConfig which is included in CreateTopicsResult. It can be accessed through
a method in CreateTopicsResult or the TopicMetadataAndConfig object.

CreateTopicsResult

public class CreateTopicsResult {

 public KafkaFuture<Uuid> topicId(String topic)

...

 public static class TopicMetadataAndConfig {

 TopicMetadataAndConfig(Uuid topicId, int numPartitions, int replicationFactor, Config config)

 public Uuid topicId()

}

The protocol for CreateTopicsResponse will also need a slight modification.

CreateTopicsResponse v7

CreateTopics Response (Version: 7) => throttle_time_ms [topics]
 throttle_time_ms => INT32
 topics => name topic_id* error_code error_message topic_config_error_code num_partitions replication_factor
[configs]
 name => STRING
 topic_id* => UUID
 error_code => INT16
 error_message => STRING
 topic_config_error_code => INT16
 num_partitions => INT32
 replication_factor => INT16
 configs => name value read_only config_source is_sensitive
 name => STRING
 value => STRING
 read_only => BOOL
 config_source => INT8
 is_sensitive => BOOL

Describe Topics

There are two use cases we want to support. 1) Obtaining topic IDs when asking to describe topics and 2) supplying topic IDs to get a description of the
topics

For use case (1), we need to modify TopicDescription and MetadataResponse

TopicDescription

/**
* Create an instance with the specified parameters.
*
* @param name The topic name
* @param internal Whether the topic is internal to Kafka
* @param partitions A list of partitions where the index represents the partition id and the element contains
* leadership and replica information for that partition.
* @param authorizedOperations authorized operations for this topic, or null if this is not known.
* @param topicId Unique value that identifies the topic
*
*/
public TopicDescription(String name, boolean internal, List<TopicPartitionInfo> partitions,
 Set<AclOperation> authorizedOperations, Uuid topicId)

/**
* A unique identifier for the topic.
*/
public Uuid topicId()

MetadataResponse v10

Metadata Response (Version: 10) => throttle_time_ms [brokers] cluster_id controller_id [topics]
cluster_authorized_operations
 throttle_time_ms => INT32
 brokers => node_id host port rack
 node_id => INT32
 host => STRING
 port => INT32
 rack => STRING
 cluster_id => STRING
 controller_id => INT32
 topics => error_code name topic_id* is_internal [partitions] topic_authorized_operations
 error_code => INT16
 name => STRING
 topic_id* => UUID
 is_internal => BOOL
 partitions => error_code partition_index leader_id leader_epoch [replica_nodes] [isr_nodes]
[offline_replicas]
 error_code => INT16
 partition_index => INT32
 leader_id => INT32
 leader_epoch => INT32
 replica_nodes => INT32
 isr_nodes => INT32
 offline_replicas => INT32
 topic_authorized_operations => INT32
 cluster_authorized_operations => INT32

When topic IDs are supported, the response will contain both the topic name and the topic ID.

For use case (2), new methods will need to be added to the Admin interface and KafkaAdminClient

Admin and KafkaAdminClient

default DescribeTopicsResult (TopicCollection topics); describeTopics

DescribeTopicsResult (TopicCollection topics DescribeTopicsOptions options)describeTopics , ;

We also plan to deprecate the old methods in a future release. There are changes to DescribeTopicsResult and deprecation of some of its methods

public class DescribeTopicsResult {

(Map<Uuid KafkaFuture<Void>> topicIdFutures Map<String KafkaFuture<Void>> protected DescribeTopicsResult , , ,
nameFutures);

DescribeTopicsResult (Map<Uuid KafkaFuture<Void>> topicIdFutures); protected static ofTopicIds ,

DescribeTopicsResult (Map<String KafkaFuture<Void>> nameFutures); protected static ofTopicNames ,

 /**
 * @return a map from topic IDs to futures which can be used to check the status of
 * individual topics if the describeTopics request used topic IDs. Otherwise return null.
 */

Map<Uuid KafkaFuture<Void>> () public , topicIdValues

 /**
 * @return a map from topic names to futures which can be used to check the status of
 * individual topics if the describeTopics request used topic names. Otherwise return null.
 */

Map<String KafkaFuture<Void>> () public , topicNameValues

 @Deprecated
 /**
 * @return a map from topic names to futures which can be used to check the status of
 * individual topics if the describeTopics request used topic names. Otherwise return null.
 */

Map<String KafkaFuture<Void>> () public , values

 /**
 * @return a future which succeeds only if all the topic descriptions succeed and the describeTopics
 * request used topic IDs.
 */
 KafkaFuture<Map<Uuid, TopicDescription>> ()public allTopicIds

 /**
 * @return a future which succeeds only if all the topic descriptions succeed and the describeTopics
 * request used topic names.
 */

 KafkaFuture<Map<String, TopicDescription>> () public allTopicNames

 @Deprecated
 /**
 * Return a future which succeeds only if all the topic descriptions succeed and the describeTopics
 * request used topic names.
 */

KafkaFuture<Void> () public all
}

MetadataRequest must also be modified. Topic name will be left in to allow requests to be made either by topic name or topic ID. Requests should only
use one or the other.

ID will be checked first, but if the value is the default zero UUID, topic name will be used instead. If an ID is specified and the ID does not exist, the
request will fail regardless of allow_auto_topic_creation.
If the topic ID is not found, the request will return an error for the topic indicating the topic ID did not exist. The check for the topic ID UNKNOWN_TOPIC_ID
will occur before checking authorization on the topic. Thus, topic IDs are not considered sensitive information.

MetadataRequest v10

Metadata Request (Version: 10) => [topics] allow_auto_topic_creation include_cluster_authorized_operations
include_topic_authorized_operations
 topics => name topic_id*
 name => STRING (nullable)*
 topic_id* => UUID
 allow_auto_topic_creation => BOOL
 include_cluster_authorized_operations => BOOL
 include_topic_authorized_operations => BOOL

DeleteTopics

It will be useful for the AdminClient to be able to specify a list of topic Ids to delete to ensure the correct topics are being deleted. New methods will need to
be added to the Admin interface and KafkaAdminClient

Admin and KafkaAdminClient

default DeleteTopicsResult (TopicCollection topics); deleteTopics

DeleteTopicsResult (TopicCollection topics DeleteTopicsOptions options)deleteTopics , ;

We also plan to deprecate the old methods in a future release. There are changes to DeleteTopicResult including deprecation of some of its old methods.

public class DeleteTopicsResult {

(Map<Uuid KafkaFuture<Void>> topicIdFutures Map<String KafkaFuture<Void>> protected DeleteTopicsResult , , ,
nameFutures);

 DeleteTopicsResult (Map<Uuid KafkaFuture<Void>> topicIdFutures);protected static ofTopicIds ,

 DeleteTopicsResult (Map<String KafkaFuture<Void>> nameFutures);protected static ofTopicNames ,

 /**
 * @return a map from topic IDs to futures which can be used to check the status of
 * individual deletions if the deleteTopics request used topic IDs. Otherwise return null.
 */

Map<Uuid KafkaFuture<Void>> () public , topicIdValues

 /**
 * @return a map from topic names to futures which can be used to check the status of
 * individual deletions if the deleteTopics request used topic names. Otherwise return null.
 */

Map<String KafkaFuture<Void>> () public , topicNameValues

 @Deprecated
 /**
 * @return a map from topic names to futures which can be used to check the status of
 * individual deletions if the deleteTopics request used topic names. Otherwise return null.
 */

Map<String KafkaFuture<Void>> () public , values

 /**
 * @return a future which succeeds only if all the topic deletions succeed.
 */

KafkaFuture<Void> () public all
}

DeleteTopics Request and Response should be modified.

DeleteTopicsRequest v6

DeleteTopics Request (Version: 6) => [topics] timeout_ms
 topics => name topic_id*
 name => STRING (nullable)*
 topic_id* => UUID
 timeout_ms => INT32

Like the MetadataRequst, ID will be checked first, but if the value is the default zero UUID, topic name will be used instead. If an ID is specified and the ID
does not exist, the request will return error for the topic indicating the topic ID did not exist. The check for the topic ID will occur UNKNOWN_TOPIC_ID
before checking authorization on the topic. Thus, topic IDs are not considered sensitive information.

DeleteTopicsResponse v6

DeleteTopics Response (Version: 6) => throttle_time_ms [responses]
 throttle_time_ms => INT32
 responses => name topic_id* error_code error_message
 name => STRING (nullable)*
 topic_id* => UUID
 error_code => INT16
 error_message => STRING

Although only topic ID or only topic name are included in the request, if topic Ids are supported, the response will contain both the name and the ID.

Compatibility with KIP-500

KIP-500 and KIP-595 utilize a special metadata topic to store information that ZooKeeper has stored in the past. This topic must exist before the controller
election, but in KIP-516, topic IDs are assigned in the controller. Here is an outline of how we can handle this.

Problem: KIP-595 describes a Vote Request which is used to elect the controller. Currently KIP-595 contains the topic name as part of the protocol.

Solution: Change Vote to use topic ID field. Use a sentinel ID reserved only for this topic before its ID is known.

Switching over to topic IDs in this KIP will result in fewer changes later on.

Problem: Post Zookeeper, a Fetch request for the metadata topic will be used to obtain information that was once stored in Zookeeper. KIP-516
stores topic IDs in Zookeeper, and the controller pushes them to brokers using LeaderAndIsrRequests. This will change to pulling the topic IDs to
the broker with a fetch of the metadata topic. KIP-516 is replacing the topic name field with a topic ID field. So how will the first Fetch request know
the correct topic ID for the metadata topic?

Solution: Use the same sentinel ID reserved for the metadata topic before its ID is known. After controller election, upon receiving the result, assign
the metadata topic its unique topic ID. The ID should be written to the metadata topic, as all IDs will now be written to this topic instead of
ZooKeeper.

Using a topic ID will result in a slightly smaller fetch request and likely prevent further changes. Assigning a unique ID for the metadata topic leaves the
possibility for the topic to be placed in tiered storage, or used in other scenarios where topics from multiple clusters may be in one place without appending
the cluster ID.

Sentinel ID

The idea is that this will be a hard-coded UUID that no other topic can be assigned. Initially the all zero UUID was considered, but was ultimately rejected
since this is used as a null ID in some places and it is better to keep these usages separate. An example of a hard-coded UUID is 000000000000000000
00000000000001

LeaderAndIsr, UpdateMetadata, and StopReplica

As mentioned in , LeaderAndIsr, UpdateMetadata, and StopReplica requests will become obsolete. However, most of the functionality of these KIP-631
requests will be replaced by using the Fetch Request on the metadata topic (as described in). Since the fetch request will be updated to support KIP-595
topic IDs in this KIP, we will be able to accomplish the same goals.

Vote

Vote will be changed to replace topic name with topic ID, and will use a sentinel topic ID if no topic ID has been assigned already. See above for more
information on sentinel topic IDs.

VoteRequest v0

VoteRequest (Version 0) => cluster_id [topics]
 cluster_id => STRING
 topics => topic_id* [partitions]
 topic_id* => UUID
 partitions => partition_index candidate_epoch candidate_id last_offset_epoch last_offset
 partition_index => INT32
 candidate_epoch => INT32
 candidate_id => INT32
 last_offset_epoch => INT32
 last_offset => INT64

VoteResponse v0

VoteResponse (Version 0) => error_code [topics]
 cluster_id => INT16
 topics => topic_id* [partitions]
 topic_id* => UUID
 partitions => partition_index error_code leader_id leader_epoch vote_granted
 partition_index => INT32
 error_code => INT16
 leader_id => INT32
 leader_epoch => INT32
 voted_granted => BOOL

BeginQuorumEpoch

BeginQuorumEpoch will replace the topic name field with the topic id field

BeginQuorumEpochRequest v0

BeginQuorumEpochRequest (Version 0) => cluster_id [topics]
 cluster_id => STRING
 topics => topic_id* [partitions]
 topic_id* => UUID
 partitions => partition_index leader_id leader_epoch
 partition_index => INT32
 leader_id => INT32
 leader_epoch => INT32

https://cwiki.apache.org/confluence/display/KAFKA/KIP-631%3A+The+Quorum-based+Kafka+Controller
https://cwiki.apache.org/confluence/display/KAFKA/KIP-595%3A+A+Raft+Protocol+for+the+Metadata+Quorum

BeginQuorumEpochResponse v0

BeginQuorumEpochResponse (Version 0) => error_code [topics]
 cluster_id => INT16
 topics => topic_id* [partitions]
 topic_id* => UUID
 partitions => partition_index error_code leader_id leader_epoch
 partition_index => INT32
 error_code => INT16
 leader_id => INT32
 leader_epoch => INT32

EndQuorumEpoch

EndQuorumEpoch will replace the topic name field with the topic id field

EndQuorumEpochRequest v0

EndQuorumEpochRequest (Version 0) => cluster_id [topics]
 cluster_id => STRING
 topics => topic_id* [partitions]
 topic_id* => UUID
 partitions => partition_index replica_id leader_id leader_epoch [preferred_successors]
 partition_index => INT32
 replica_id => INT32
 leader_id => INT32
 leader_epoch => INT32
 preferred_successors => INT32

EndQuorumEpochResponse v0

EndQuorumEpochResponse (Version 0) => error_code [topics]
 cluster_id => INT16
 topics => topic_id* [partitions]
 topic_id* => UUID
 partitions => partition_index error_code leader_id leader_epoch
 partition_index => INT32
 error_code => INT16
 leader_id => INT32
 leader_epoch => INT32

log.dir layout

It would be ideal if the log.dir layout could be restructured from format to {{topicIdprefix}}/ , e.g. "mytopic_1" "24 {topic}_{partition} {topicId}_{partition}
/24cc4332-f7de-45a3-b24e-33d61aa0d16c_1". Note the hierarchical directory structure using the first two characters of the topic ID to avoid having too
many directories at the top level of the logdir. The exact formatting of the directory is not set in stone, but the idea is to replace topic names with topic IDs
in the log directory. This is a significant change and will only be added upon a major release, most likely alongside KIP-500 changes that will also prevent
downgrades.

Migration

Topic IDs will only be available to brokers with IBP version 2.8 or greater.

Upon a controller becoming active, the list of current topics is loaded from When a topic without a topic ID is found, a UUID will be /brokers/topics/[topic].
randomly generated and assigned the topic information at will be updated with the id filled and the schema version bumped to /brokers/topics/[topic]
version 3.

LeaderAndIsrRequest(s) will only be sent by the controller once a topic ID has been successfully assigned to the topic. Since the LeaderAndIsrRequest
version was bumped, the IBP must also be bumped for migration.

When a replica receives a LeaderAndIsrRequest containing a topic ID for an existing partition which does not have a topic ID associated, it will create a
partition metadata file for the topic partition locally. At this point the local partition will have been migrated to support topic IDs.

Compatibility, Deprecation, and Migration Plan
We will need to support all API calls which refer to a partition by either (topicId, partition) or (topicName, partition) until clients are updated to interact with
topics by ID. In the first stages, deprecations are not currently planned.

However, when the directory structure is changed, downgrades will be no longer possible and the old directory structure will be deprecated.

Rejected Alternatives

Sequence ID

As an alternative to a topic UUID, a sequence number (long) could be maintained that is global for the given cluster.

This sequence number could be stored at ./topicid/seqid

Upon topic creation, this sequence number will incremented, and the ID assigned to the created topic. Sequential topic ID generation can use the same
approach to broker id generation.

If global uniqueness across clusters is required for topic IDs the first N bits of the ID could consist of a cluster ID prefix, followed by the sequence number.
However, to achieve global uniqueness, this would require a large number of bits for the cluster ID prefix.

Use of a UUID has the benefit of being globally unique across clusters without partitioning the ID space by clusterID, and is conceptually simpler.

Topic Deletion

We considered and rejected two other strategies for performing topic deletes.

Best Effort Strategy

Under this stategy, the controller will attempt to send a StopReplicaRequest to all replicas. The controller will give up after a certain number of retries and
will complete the delete. Although this will not simplify the topic deletion code, it will prevent delete topic requests from being blocked if one of the replicas
is down. This would now be relatively safe, as stale topics will be deleted when a broker receives an initial LeaderAndIsrRequest, however it could prevent
space from being reclaimed from a broker that does not respond to a StopReplicaRequest(s) before it is timed out, but is otherwise alive.

Send StopReplicaRequest(s) to online brokers only

In this approach, the controller will send StopReplicaRequests to only the brokers that are online, and will wait for a response from these brokers before
marking the delete as successful. This will allow a topic delete to take place while some replicas are offline. If any replicas return to being online, they will
receive an initial LeaderAndIsrRequest that will allow them to clear up any stale state. This is similar to the "best effort strategy above".

org.apache.kafka.common.TopicPartition

Eventually the TopicPartition class should include the topic ID. This may be difficult to enact until all APIs support topic IDs, and could come with a
performance impact if implemented prior to this, as TopicPartitions are used for hashmap lookups throughout the broker.

Persisting Topic IDs

A few other alternatives to the partition metadata file were considered. One topic of discussion was whether it was necessary to include at all. While the
the topic name is used in the directory structure, the only way to persist the topic ID to disk is through a file. As discussed above, the directory changes will
not be added until a major release.

The file can also be used for tooling purposes, and may contain mappings that will be useful in the future.

Another alternative is to have a single file mapping all topic names to ids. Although this could be useful for tooling, it would be harder to maintain this file
and update on each new topic added.

Future Work

Requests

The following requests could be improved by presence of topic IDs, but are out of scope for this KIP.

CreatePartitionsRequest
ElectPreferredLeadersRequest
AlterReplicaLogDirsRequest
AlterConfigsRequest
DescribeConfigsRequest
DescribeLogDirsRequest
DeleteRecordsRequest
AddPartitionsToTxnRequest
TxnOffsetCommitRequest
WriteTxnMarkerRequest

AdminClient

There are further changes to AdminClient made possible by adding topic ids. By adding topic ids to various request types (like those listed above)
AdminClient can support identifying topics by ID. Some examples include but are not limited to:

Using topic ids to specify what topics should receive new partitions in createPartitions
Return ids in ListTopicsResult or TopicListing for listTopics
Adding id to a type like TopicPartition or TopicPartitionReplica (see TopicIdPartition below)

Using topic ids (currently TopicPartition) to specify topic of the partitions for deleteRecords
Using topic ids (currently TopicPartitionReplica) to specify topic for alterReplicaLogDirs
Using topic ids (currently TopicPartition) to specify topic of the partitions for electLeaders

Clients

Some of the implemented request types are also relevant to clients. Adding full support for topic IDs in the clients would add an additional measure of
safety when producing and consuming data. Fully supporting Topic IDs in clients is out of scope for this KIP due to the numerous public APIs that will need
adjustments.

__consumer_offsets topic

Ideally, consumer offsets stored in the __consumer_offsets topic would be associated with the topic ID for which they were read. However, given the way
the __consumer_offsets is compacted, this may be difficult to achieve in a forwards compatible way. This change will be left until topic IDs are
implemented in the clients. Another future improvement opportunity is to use topicId in GroupMetadataManager.offsetCommitKey in the offset_commit
topic. This may save some space.

Security/Authorization

One idea was to support authorizing a principal for a topic ID rather than a topic name. For now, this would be a breaking change, and it would be hard to
support prefixed ACLs with topic IDs.

TopicIdPartition

Replacing a topic name with a topic ID introduced an issue with how the servers and clients should handle creating TopicPartition objects used when
handling the requests. One id was to create a public TopicIdPartition object that could contain either a topic ID or a topic name along with the partition
depending on the request version. However, TopicPartitions are used in numerous public APIs and all of those would have to be adapted to handle this
new object. Due to the scope of these changes, the TopicIdPartition is out of scope and placed in future work.

Another alternative is adding an id field to the already existing TopicPartition object. However, even in this case, it is not yet clear all the implications, as
some uses of TopicPartition require the topic name to be present.

Since this question requires a bit more thought and result in widespread changes, it is suggested that this change should be future work, perhaps its own
KIP.

	KIP-516: Topic Identifiers

