
Redesign for more standards including Maven

Redesigning for more standards including Maven

NOTE: This is a work-in progress as of 1/28/2010

This is a proposed redesign of the layout in SVN and the way we use Maven, to enable broader use of standard tooling and approaches for development
and release.

As the new design takes shape over time, it will be documented here:
Maven use design as top level project

This redesign could be part of our move to a TLP (top level project), assuming we graduate .

Goals

Fix things that work poorly now.

RAT reports - currently run on entire assembly, which means we have to unzip it, and run on that.
should run on pre-zipped things
Therefore, try to run on individual projects, not on distr

Non Hierarchical POM layout (flat layout) causing problems
Release plugin doesn't work

may be fixed in latest version of Release Plugin
Assembly plugin "modules" doesn't work

because it requires the aggregator pom to be in the parent directory of the modules, I think
m2eclipse works nicely with hierarchical layout

prototyped this already, and can make things work with hierarchical directory layout
Simple things like checking out all of uima - uimaj, uima-as, sandbox, (uimacpp - work on this later) from SVN with one export, and then
being able to build, doesn't work

Current extract & build requires copying over / merging separate SVN checkouts

Source release doesn't match SVN
should be just a zipped up version of the svn, or generated using the source mvn plugin.
source assembly should be (if possible) just the sources zipped up

may need to have a SVN structure that separates things not in releases (e.g. uimaj-internal-tools)

Building from checkout - workspace and SVN layout don't match, so after checkout (via command line from a top level node like sandbox) you
need to copy this into the same dir as another checkout (e.g., uimaj).

This was caused by earlier Eclipse needing to have everything in one level.
Now you can have the non-java projects imported into Eclipse, containing other java projects as subdirectories, and
simultaneously, also import those Java projects into Eclipse as other projects

M2Eclipse does this, for example

Many parts don't change from release to release - avoid re-releasing these
make more use of component part versions
support add-on projects being individually released

POM hierarchy mixes up aggregation with inheritance
Follow new "best practice" of having at least some of the super POMs have integer version numbers, and not changing these very often
(see TBD web ref)

POMs used for overlapping purposes
Consider a superpom hierarchy that separates these separately, for easier maintenance

maven tooling dependency version
component dependency version (if appropriate)

Make project versioning work with Release plugin
Substitute a more standard way for our use of "properties" for version numbers.

This should allow our POMs to have less version dependence.

Balance maintenance-motivated DRY (don't repeat yourself) with obfuscation
sometimes having things factored so as to inherit from things and/or use properties set elsewhere in complex ways makes future
readability / maintenance difficult.
using for version information in some cases is triggering warning messages, in m2eclipse, and in the next version of Maven properties
(maven 3) - saying this is not good practice, and may not be supported in the future.

Figure out Maven's approach to properties
It seems that there is a mechanism for "releases" that captures the settings of properties used in build the release, for reproducibility
It also seems there is a concept in the Release plugin where it substitutes actual values of properties when it makes the "tag", and then
puts back the ${xxx} variable form when it updates the trunk. This allows the tagged item to be more "independent" of other components
- for instance, when it is located in a Maven repository as a downloadable artifact.

Support future incorporation of Continuous Integration (CI)

https://cwiki.apache.org/confluence/display/UIMA/MavenUseDesignAsTlp

Add Website support automation

Currently the website is maintained completely manually. More standards could enable automatic creation of various developer reports, updating the
download page as part of the release process, etc.

Design

After thinking that redesigning svn layout was important, I now think that's not the case, but what is important is to change how the build works, as follows:

make each component independently buildable
This is the main "fix". There are several things in the current build that violate this.

We have a custom docbook build - that uses a "checked-out" docbook tool project, that currently has to be in a certain directory
hierarchy relationship with the project being built. This is fixable by no longer using our own docbook tooling, and instead using
the recently developed docbkx maven plugin.
We also have dependencies on parent POMs. This can be fixed by making those dependencies use poms in the maven
repository (or the local repository). This requires that any updates to these POMs be put in either the local repo or separately
"released".

I've noticed that many projects have moved to this style, and name their parent poms with release numbers like "1",
"2", etc. For instance, the common Apache "parent" pom is at release "7".
It would be good to reduce POM changes in parent poms by isolating the POMs to particular functions. For instance,
we currently often mix up the "aggregator" pom function (<modules>) with being a parent. The aggregator will change
with every release - it will include particular items at particular levels for the release, while the parent poms will likely
change less often.

We also have dependencies on particular files, such as common license / notice files. These kinds of common resources are
now being handled by the maven remote-dependency plugin. The Apache Parent POM does this, for instance, and we can
move to using this same style of dependency, to remove any requirement for particular checkout hierarchy.

Because of this, I don't think that any change is in the current svn tree; we can use other use cases to motivate incremental changes to the svn required
tree structure, as needed.

One possible change is to create a new top level svn node holding non-released tooling (e.g., the projects uimaj-internal-tools and uimaj-jet-
expander) - and move these there. This will enable source releases to be just the zipped up sources of the svn checkout (after maybe moving
some license & notice files around as needed).

a new top level svn node called "build" has been created, and holds build-related things such as maven parent poms, resources needed
by the build processes, etc.

	Redesign for more standards including Maven

