
Relevancy Testing Outline
Introduction
It's nice to be able to compare one search engine to another in some unbiased way. You point a couple search engines at the same documents and run
some searches. The test tool then pops a numerical grade. These grades can either compare each engine to what humans have said are the correct
answers, or compares one engine directy to another, and at least determins which one did better. has been one of the groups trying to perfect this TREC
type of testing over the years.

As simple as this sounds, quite a few issues come up that make this more difficult than you might think:

You need to get a large set of documents and searches to test with. This can be a problem for copyright reasons, among other things.
You need to come up with searches that represent the types of things real users would search for, and get everybody to agree on what's a fair
test search.
Getting humans to sit down and record what the best matches should be is very time consuming for large data sets.
Then you need to decide which mathematical formulas you'll use to crank out the final scores. For example, is it better to have an engine that
gives modestly relevant results almost all the time, or an engine that gives really good answers sometimes, better on average than the other
engine, but sometimes gives back complete garbage?

Some of these problems are so time consuming that other groups have taken a radically different approach. Instead of worrying about the "right" or
"wrong" answers, they just have users try both engines, and see which one they like better! This type of is much more common on the World AB Testing
Wide Web. Of course there are also many technical details with these tests. For example, should users specifically tell you which search results they like
better, or should you just randomly change it behind the scenes and see which one produces more clicks?

Things get a bit more technical at this point. Below is an outline and links to more detailed pages. Remember this is a work in progress, and something
you can contribute to.

Two General Types of Testing

Absolute Truth / Matrix / Grid / TREC / Relevancy Assertions
The correct answers for each search are known ahead of time
Humans judges often decide these correct answers, stored as Relevancy Assertions
Can be labor intensive to setup
continued on the pageRelevancy Assertion Testing

AB Testing / User Preference
Tracks explicit or implicit preferences between engines A/B
Often dispenses with the notion of the "correct" answer
Can be easier to setup, but some fear the best answers will be missed by both engines
continued on the pageAB Testing

Beyond Precision and Recall: How Engines are Judged

Binary vs. Non-Binary Grading Systems
Early TREC had binary judgements, only Yes/No on whether each doc was related to a test search
More choices were later added
A system can use letter grades (A, B, C, D and F) or numeric grades
Another style asks testers to sort documents in their preferred order

Classic Measurements: Precision and Recall
Recall: "Did I find all the documents I expected to get back? What percent?"
Precision: "Did the system bring back other documents that weren't relevant? What percent were on target?"

Newer Ideas:
Rank: The order of documents that were returned

Generally a 1 in 20 match in the #1 spot is better than a 50% rate where all matches are on the second page.
Interactivity: What navigators or visualization were given to help the user iteratively drill down and find what they were looking for

Facets and sorting: Clickable filters and sort options
Unsupervised Clustering: Related terms or phrases, or related searches
Spelling and thesaurus suggestions

Subject Disambiguation, Sentiment, Conflicting Information, crowd hints
kidney or bean kidney cell
" football team in the UK"best

Mathematical assessments generally covered under implementations.

Sources of Variance, AKA "Problems"

Different Goals
Perfect/Human vs. Best vs. Acceptable vs. Better than X
Constrained vs. Unconstrained Resources (time, cpu, storage)

Sample Size
Amount of Data

Fixed set or growing over time
Number of Testers (AB or Relevancy Judgments)
Number of Searches

Vertical vs. Horizontal Content
One extreme: Specific demo may cover just one discipline, for example Medical Journals
Other extreme: Internet covers vastly disparate domains

Vocabulary Variation / Mistmatch: Search vs. Content
Users

https://cwiki.apache.org/confluence/display/ORP/Relevancy+Assertion+Testing
https://cwiki.apache.org/confluence/display/ORP/AB+Testing+of+Search+Engines

Experienced vs. New Searcher
Subject Expert vs. Novice
Spelling, typing and computer proficiency
Reading Level, Native Language, IQ
Interface Medium (large visual display, small text display, audible, Braille, etc)
Amount of Effort to understand Search
Willingness to Iterate
Searching for specific answer vs. General Exploration

Type of Searches
Length / 1 or 2 words
Full question
Sample text
Internet Boolean
Advanced Boolean / Syntax / Proximity

Wildcard, Regex, etc.
Abbreviations
Punctuation

Chemical
Source Code
Units of Measure
Literal vs. Search Operator

Popular vs. Outlier / Researcher
Potential for Shared Search Engine Biases

TF/IDF
Shared Thesaurus
Similar fuzzy matching (Snowball, Soundex, etc)

Multilingual Search Evaluations

Conceptually easier if same text is translated into each language as source docs and test searches
AKA "Parallel Text"
Would need text that has BOTH been widely translated AND doesn't have overly restrictive copyrights

Government documents?
Older famous books?
Even in these cases, gaps need to be tracked and accounted/compensated for

Even parallel text Introduces an additional variance due to translation
Perhaps used automated tools to translate out to some other language
Very imprecise, BUT perhaps this would serve as the basis for "worst case" score?

For grid/TREC style testing you could either:
Re-use the relevancy assertions / "truth grid" from the native language

Rationale: documents about "water usage in California" are still about that subject, regardless of the language
Anti-rationale: translation tends to change the meaning of both docs and searches, and therefore doubly so the
relevance

Ideally the relevancy assertions would be filled in again by native speakers
Nice idea, but labor intensive
Even within one language it'd be idea to have multiple testers, as discussed above

What to do if the text is in each language...different
If still want "absolute truth", some other ideas in best to worst:

Try to use similar subject matter
Use content and searches from a similar profession or market
If using completely different content, try to quantify the differences and correct the results with statistics

Give up on grid/truth tests and switch to AB testing. Rationales:
Even in the best ideal test cases there could be underlying cultural differences that skew the test
Search may fundamentally perform differently in some languages, for example Asian languages that don't have visible word
breaks. Or they may be used to certain search engine behaviors intrinsic to search in their language.
Different languages imply different markets. Even if a search engine were mathematically proven to be "just as accurate" in
another language, that fact might be vastly overridden by other market forces, such as availability of other search engines

Non-Textual Search Evaluations

Search using Multimedia tags (Ex: Flickr photo tags)
vs. Search that looks at the actual bits and bytes
User tags (explicit vs implicit)

Evaluating True Binary Search
Types of data

Images
Audio
Video (visual and/or audible sound track)
General Binary Data
Telemetry, instruments, financial, environmental, genetic sequences

How the search is entered
Searcher still uses textual descriptions / queries
Searcher presents a sample image (or sound clip, etc)
Searcher sketches a sample diagram (or hums a sample tune)
Searcher iteratively refines a sample or results set (harder to judge via classical grid/TREC style rankings)

Usage Scenarios (beyond basic search)
Clustering (unsupervised)
Classification (supervised)
Entity Recognition / Extraction

Code Implementation

Comparing TREC to ORP
TREC Code

Written in C
License Restrictions

ORP Code
Java
Apache License (still restrictions)some

Interface between ORP and Search Engines
Search Engines generally don't support native TREC/ORP formats

Each engine would need adapters
OR ORP could interface with native Search Engines' APIs
OR Use some intermediate format like OpenSearch or other Federated Search technique

maybe Lucene Benchmark Package
Implementing Judgments

Grid Methods, borrow from TREC?
Classic Precision and Recall
MRR, MAP, BPref, NDCG

AB Methods
Predictive? Constant mixing, TODO: needs expansion

Data Considerations

General Considerations
Character Encoding
Simple record files vs. XML
Interchange with Excel / OpenOffice / Numbers / Google Docs
Interaction w/ Databases...
Interaction w/ OpenSearch
Version Control

Specific Entities to Store
Sample Documents
Searches (AKA TREC Topics)
Relevancy Judgments (AKA TREC qrels)
AB Preferences (click-throughs, explicit ratings, etc)
Controlled Index vs. Federated Search (TODO: explain)

Search Engine Results List Formats / APIs
Textual vs. Non-Textual Data

Corpus, Searches and Judgments
See other section for non-text discussion

	Relevancy Testing Outline

