
1.
2.
3.
4.
5.
6.
7.
8.

1.
2.

Apache Hudi - Release Guide (Pre Graduation)

Introduction

This release process document is based on Apache Beam Release Guide and Apache Flink Release Guide

The Apache Hudi project periodically declares and publishes releases. A release is one or more packages of the project artifact(s) that are approved for
general public distribution and use. They may come with various degrees of caveat regarding their perceived quality and potential for change, such as
“alpha”, “beta”, “incubating”, “stable”, etc.

Hudi community treats releases with great importance. They are a public face of the project and most users interact with the project only through the
releases. Releases are signed off by the entire Hudi community in a public vote.

Each release is executed by a Release Manager, who is selected among the Hudi PMC members. This document describes the process that the Release
Manager follows to perform a release. Any changes to this process should be discussed and adopted on the dev@ mailing list.

Please remember that publishing software has legal consequences. This guide complements the foundation-wide Product Release Policy and Release
Distribution Policy.

Overview

The release process consists of several steps:

Decide to release
Prepare for the release
Build a release candidate
Vote on the release candidate
During vote process, run validation tests
If necessary, fix any issues and go back to step 3.
Finalize the release
Promote the release

Decide to release

Deciding to release and selecting a Release Manager is the first step of the release process. This is a consensus-based decision of the entire community.

Anybody can propose a release on the dev@ mailing list, giving a solid argument and nominating a committer as the Release Manager (including
themselves). There’s no formal process, no vote requirements, and no timing requirements. Any objections should be resolved by consensus before
starting the release.

In general, the community prefers to have a rotating set of 3-5 Release Managers. Keeping a small core set of managers allows enough people to build
expertise in this area and improve processes over time, without Release Managers needing to re-learn the processes for each release. That said, if you
are a committer interested in serving the community in this way, please reach out to the community on the dev@ mailing list.

Checklist to proceed to the next step

Community agrees to release
Community selects a Release Manager

Prepare for the release

Inactive; For bookkeeping purposes only

RETIRED This page has been replaced since graduation. It's no longer accurate or
maintained

https://beam.apache.org/contribute/release-guide/
https://cwiki.apache.org/confluence/display/FLINK/Creating+a+Flink+Release
http://www.apache.org/dev/release.html
http://www.apache.org/dev/release-distribution
http://www.apache.org/dev/release-distribution

1.
2.
3.

4.

1.
2.
3.
4.
5.

Before your first release, you should perform one-time configuration steps. This will set up your security keys for signing the release and access to various
release repositories.

To prepare for each release, you should audit the project status in the JIRA issue tracker, and do the necessary bookkeeping. Finally, you should create a
release branch from which individual release candidates will be built.

NOTE: If you are using GitHub two-factor authentication and haven’t configure HTTPS access, please follow the guide to configure command line access.

One-time setup instructions

GPG Key

You need to have a GPG key to sign the release artifacts. Please be aware of the ASF-wide release signing guidelines. If you don’t have a GPG key
associated with your Apache account, please create one according to the guidelines.

There are 2 ways to configure your GPG key for release, either using release automation script(which is recommended), or running all commands
manually.

Use preparation_before_release.sh to setup GPG

Script: preparation_before_release.sh
Usage ./hudi/scripts/release/preparation_before_release.sh

Tasks included
Help you create a new GPG key if you want.
Configure git user.signingkey with chosen pubkey.
Add chosen pubkey into dev KEYS and release KEYS
NOTES: Only PMC can write into release repo.
Start GPG agents.

Run all commands manually

Get more entropy for creating a GPG key
sudo apt-get install rng-tools

sudo rngd -r /dev/urandom

Create a GPG key
gpg --full-generate-key

Determine your Apache GPG Key and Key ID, as follows:
gpg --list-keys

This will list your GPG keys. One of these should reflect your Apache account, for example:
--
pub 2048R/935D191 2019-08-29
uid Anonymous Anonymous <anonymous@apache.org>
sub 2048R/CD4C59FD 2019-08-29

Here, the key ID is the 8-digit hex string in the pub line: 845E6689 or more than 8-digit hex string like 623E08E06DB376684FB9599A3F5953147903948A.
Now, add your Apache GPG key to the Hudi’s KEYS file both in dev and release repositories at dist.apache.org. Follow the instructions listed at the top of
these files. (Note: Only PMC members have write access to the release repository. If you end up getting 403 errors ask on the mailing list for assistance.)

Configure git to use this key when signing code by giving it your key ID, as follows:
git config --global user.signingkey CD4C59FD, or git config --global user.
signingkey 623E08E06DB376684FB9599A3F5953147903948A

You may drop the --global option if you’d prefer to use this key for the current repository only.
Start GPG agent in order to unlock your GPG key

eval $(gpg-agent --daemon --no-grab --write-env-file $HOME/.gpg-agent-info)

export GPG_TTY=$(tty)

export GPG_AGENT_INFO

Access to Apache Nexus repository

Configure access to the Apache Nexus repository, which enables final deployment of releases to the Maven Central Repository.

You log in with your Apache account.
Confirm you have appropriate access by finding org.apache.hudi under Staging Profiles.
Navigate to your Profile (top right dropdown menu of the page).
Choose User Token from the dropdown, then click Access User Token. Copy a snippet of the Maven XML configuration block.
Insert this snippet twice into your global Maven settings.xml file, typically ${HOME}/.m2/settings.xml. The end result should look like this, where T
OKEN_NAME and TOKEN_PASSWORD are your secret tokens:

https://help.github.com/articles/securing-your-account-with-two-factor-authentication-2fa/
https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/
https://www.apache.org/dev/release-signing.html
https://github.com/apache/incubator-hudi/blob/master/release/scripts/preparation_before_release.sh
https://dist.apache.org/repos/dist/dev/hudi/KEYS
https://dist.apache.org/repos/dist/release/hudi/KEYS
https://dist.apache.org/repos/dist/release/hudi/KEYS
https://dist.apache.org/repos/dist/release/hudi/
mailto:anonymous@apache.org
https://dist.apache.org/repos/dist/dev/incubator/hudi/KEYS
https://dist.apache.org/repos/dist/release/incubator/hudi/KEYS
http://dist.apache.org
http://repository.apache.org/

1.
2.

3.

<settings>
 <servers>
 <server>
 <id>apache.releases.https</id>
 <username>TOKEN_NAME</username>
 <password>TOKEN_PASSWORD</password>
 </server>
 <server>
 <id>apache.snapshots.https</id>
 <username>TOKEN_NAME</username>
 <password>TOKEN_PASSWORD</password>
 </server>
 </servers>
 </settings>

Submit your GPG public key into MIT PGP Public Key Server

In order to make yourself have the right permission to stage java artifacts in Apache Nexus staging repository, please submit your GPG public key into MIT
PGP Public Key Server. If you have problem in submit your GPG key to the key server in browse, please try run

gpg --keyserver hkp://pool.sks-keyservers.net --send-keys ${PUBLIC_KEY} and verify via gpg --keyserver
hkp://pool.sks-keyservers.net --recv-keys ${PUBLIC_KEY}

also send public key to ubuntu server via

gpg --keyserver hkp://keyserver.ubuntu.com --send-keys ${PUBLIC_KEY} # send public key to ubuntu server
gpg --keyserver hkp://keyserver.ubuntu.com --recv-keys ${PUBLIC_KEY} # verify

would also refer to .stackoverflow

Create a new version in JIRA

When contributors resolve an issue in JIRA, they are tagging it with a release that will contain their changes. With the release currently underway, new
issues should be resolved against a subsequent future release. Therefore, you should create a release item for this subsequent release, as follows:

Attention: Only PMC has permission to perform this. If you are not a PMC, please ask for help in dev@ mailing list.

In JIRA, navigate to Hudi > Administration > Versions.
Add a new release. Choose the next minor version number after the version currently underway, select the release cut date (today’s date) as the S
tart Date, and choose Add.
At the end of the release, go to the same page and mark the recently released version as released. Use the ... menu and choose Release.

Triage release-blocking issues in JIRA

There could be outstanding release-blocking issues, which should be triaged before proceeding to build a release candidate. We track them by assigning a
specific Fix version field even before the issue resolved.

The list of release-blocking issues is available at the version status page. Triage each unresolved issue with one of the following resolutions:

For all JIRA issues:

If the issue has been resolved and JIRA was not updated, resolve it accordingly.

For JIRA issues with type “Bug” or labeled “flaky”:

If the issue is a known continuously failing test, it is not acceptable to defer this until the next release. Please work with the Hudi community to
resolve the issue.
If the issue is a known flaky test, make an attempt to delegate a fix. However, if the issue may take too long to fix (to the discretion of the release
manager):

Delegate manual testing of the flaky issue to ensure no release blocking issues.
Update the Fix Version field to the version of the next release. Please consider discussing this with stakeholders and the dev@ mailing
list, as appropriate.

For all other JIRA issues:

http://pgp.mit.edu:11371/
http://pgp.mit.edu:11371/
https://stackoverflow.com/questions/19462617/no-public-key-key-with-id-xxxxx-was-not-able-to-be-located-oss-sonatype-org
https://jira.apache.org/jira/projects/HUDI/summary
https://issues.apache.org/jira/plugins/servlet/project-config/HUDI/versions
https://issues.apache.org/jira/projects/HUDI?selectedItem=com.atlassian.jira.jira-projects-plugin%3Arelease-page&status=unreleased-archived

If the issue has not been resolved and it is acceptable to defer this until the next release, update the Fix Version field to the new version you just
created. Please consider discussing this with stakeholders and the dev@ mailing list, as appropriate.
If the issue has not been resolved and it is not acceptable to release until it is fixed, the release cannot proceed. Instead, work with the Hudi
community to resolve the issue.

If there is a bug found in the RC creation process/tools, those issues should be considered high priority and fixed in 7 days.

Review Release Notes in JIRA

JIRA automatically generates Release Notes based on the Fix Version field applied to issues. Release Notes are intended for Hudi users (not Hudi
committers/contributors). You should ensure that Release Notes are informative and useful.

Open the release notes from the version status page by choosing the release underway and clicking Release Notes.

You should verify that the issues listed automatically by JIRA are appropriate to appear in the Release Notes. Specifically, issues should:

Be appropriately classified as Bug, New Feature, Improvement, etc.
Represent noteworthy user-facing changes, such as new functionality, backward-incompatible API changes, or performance improvements.
Have occurred since the previous release; an issue that was introduced and fixed between releases should not appear in the Release Notes.
Have an issue title that makes sense when read on its own.

Verify that a Release Build Works

Run mvn -Prelease clean install to ensure that the build processes are in good shape.

Create a release branch in apache/hudi repository

Attention: Only committer has permission to create release branch in apache/hudi.

Release candidates are built from a release branch. As a final step in preparation for the release, you should create the release branch, push it to the
Apache code repository, and update version information on the original branch.

Export Some Environment variables in the terminal where you are running the release scripts

export RELEASE_VERSION=<RELEASE_VERSION_TO_BE_PUBLISHED>

export NEXT_VERSION=<NEW_VERSION_IN_MASTER>

export RELEASE_BRANCH=release-<RELEASE_VERSION_TO_BE_PUBLISHED>

export RC_NUM=<release_candidate_num_starting_from_1>

Use cut_release_branch.sh to cut a release branch

Script: cut_release_branch.sh

Usage

Cut a release branch
Cd scripts && ./release/cut_release_branch.sh \
--release=${RELEASE_VERSION} \
--next_release=${NEXT_VERSION} \
--rc_num=${RC_NUM}
Show help page
./hudi/scripts/release/cut_release_branch.sh -h

Checklist to proceed to the next step

Release Manager’s GPG key is published to dist.apache.org
Release Manager’s GPG key is configured in git configuration
Release Manager has org.apache.hudi listed under Staging Profiles in Nexus
Release Manager’s Nexus User Token is configured in settings.xml
JIRA release item for the subsequent release has been created
All test failures from branch verification have associated JIRA issues
There are no release blocking JIRA issues
Release branch has been created
Release Notes have been audited and added to RELEASE_NOTES.md

Build a release candidate

https://issues.apache.org/jira/browse/Hudi/?selectedTab=com.atlassian.jira.jira-projects-plugin:versions-panel
https://github.com/apache/incubator-hudi/blob/master/scripts/release/cut_release_branch.sh
http://dist.apache.org
http://RELEASE_NOTES.md

a.

b.
i.

c.
i.

d.
i.

e.
i.

ii.

f.
i.
i.

ii.

1.
iii.

iv.
1.

i.

ii.

iii.
g.

i.

ii.
1.

h.
i.
ii.

i.

ii.
1.

iii.
1.

iv.

v.

i.
i.

ii.
1.

iii.
1.

iv.
1.

v.
1.

2.

3.

vi.

vii.

The core of the release process is the build-vote-fix cycle. Each cycle produces one release candidate. The Release Manager repeats this cycle until the
community approves one release candidate, which is then finalized.

Set up a few environment variables to simplify Maven commands that follow. This identifies the release candidate being built. Start with RC_NUM equal to 1
and increment it for each candidate. Also, As Hudi is in incubation phase, all artifacts must include “-incubating” in their names

git checkout ${RELEASE_BRANCH}

Run mvn version to set the proper rc number in all artifacts
mvn versions:set -DnewVersion=${RELEASE_VERSION}-incubating-rc${RC_NUM}

Run Unit tests and ensure they succeed
mvn test -DskipITs=true

Run Integration Tests and ensure they succeed
mvn verify -DskipUTs=true

Commit and push this change to RELEASE branch
git commit -am “Bumping release candidate number ${RC_NUM}”

git push origin ${RELEASE_BRANCH}

Generate Source Release:
This will create the tarball under hudi/src_release directory
cd hudi/src_release

gpg --verify hudi-${RELEASE_VERSION}-incubating-rc${RC_NUM}.src.tgz.asc
hudi-${RELEASE_VERSION}-incubating-rc${RC_NUM}.src.tgz

You should verify that the signature is good
tar -zxvf hudi-${RELEASE_VERSION}-incubating-rc${RC_NUM}.src.tgz && cd hudi-${RELEASE_VERSION}
-incubating-rc${RC_NUM} && mvn clean package -DskipTests

If they pass, delete the repository we got from the tar-ball
cd ../ && rm -rf hudi-${RELEASE_VERSION}-incubating-rc${RC_NUM}

git checkout ${RELEASE_BRANCH}

cd scripts && ./release/create_source_release.sh

Verify Source release is signed and buildable
Create tag

git tag -s ${RELEASE_VERSION}-incubating-rc${RC_NUM} "${RELEASE_VERSION}"

if apache repo is origin.
git push origin ${RELEASE_VERSION}-incubating-rc${RC_NUM}

Deploy maven artifacts and verify
This will deploy jar artifacts to the Apache Nexus Repository, which is the staging area for deploying jars to Maven Central.
Review all staged artifacts (https://repository.apache.org/). They should contain all relevant parts for each module, including po
m.xml, jar, test jar, source, test source, javadoc, etc. Carefully review any new artifacts.
git checkout ${RELEASE_BRANCH}

This will deploy 2.11 artifacts to repository.apache.org
cd scripts && ./release/deploy_staging_jars.sh --scala_version=2.11

This will deploy 2.12 artifacts to repository.apache.org.
./release/deploy_staging_jars.sh --scala_version=2.12

Review all staged artifacts to ensure it contains both 2.11 and 2.12 artifacts, mainly hudi-spark-bundle-2.11/2.12, hudi-spark-
2.11/2.12, hudi-utilities-bundle_2.11/2.12 and hudi-utilities_2.11/2.12.
Close the staging repository on Apache Nexus. When prompted for a description, enter “Apache Hudi (incubating), version
${RELEASE_VERSION}-incubating, release candidate ${RC_NUM}”.

Stage source releases on dist.apache.org
If you have not already, check out the Hudi section of the dev incubator repository on dist.apache.org via Subversion. In a fresh
directory
if you would not checkout, please try svn checkout again.https://dist.apache.org/repos/dist/dev/incubator/hudi

svn checkout --depth=immediateshttps://dist.apache.org/repos/dist/dev/incubator/hudi

Make a directory for the new release:
 mkdir hudi/hudi-${RELEASE_VERSION}-incubating-rc${RC_NUM}

Copy Hudi source distributions, hashes, and GPG signature:
mv <hudi-dir>/src_release/* hudi/hudi-${RELEASE_VERSION}-incubating-rc${RC_NUM}

Add and commit all the files.
cd hudi

svn add hudi-${RELEASE_VERSION}-incubating-rc${RC_NUM}

svn commit

Verify that files are present

https://repository.apache.org/
https://repository.apache.org/
http://repository.apache.org/
http://dist.apache.org
http://dist.apache.org/
https://dist.apache.org/repos/dist/dev/incubator/hudi
https://dist.apache.org/repos/dist/dev/incubator/hudi
https://dist.apache.org/repos/dist/dev/incubator/hudi

vii.
1.

1.
2.

Run Verification Script to ensure the source release is sane
cd scripts && ./release/validate_staged_release.sh --release=${RELEASE_VERSION} --
rc_num=${RC_NUM} --verbose

Checklist to proceed to the next step

Maven artifacts deployed to the staging repository of repository.apache.org
Source distribution deployed to the dev repository of dist.apache.org and validated

Vote on the release candidate

Apache Hudi needs rounds of voting

Voting on dev@hudi group
Voting on general@incubator group

Once you have built and individually reviewed the release candidate, please share it for the community-wide review. Please review foundation-wide voting
guidelines for more information.

Start the review-and-vote thread on the dev@ mailing list. Here’s an email template; please adjust as you see fit.

From: Release Manager

To: or general@incubator.apache.orgdev@hudi.apache.org

Subject: [VOTE] Release 1.2.3, release candidate #3

Hi everyone,

Please review and vote on the release candidate #3 for the version 1.2.3, as follows:

[] +1, Approve the release

[] -1, Do not approve the release (please provide specific comments)

The complete staging area is available for your review, which includes:

* JIRA release notes [1],

* the official Apache source release and binary convenience releases to be deployed to [2], which are signed with the key with dist.apache.org
fingerprint FFFFFFFF [3],

* all artifacts to be deployed to the Maven Central Repository [4],

* source code tag "release-1.2.3-rc3" [5],

The vote will be open for at least 72 hours. It is adopted by majority approval, with at least 3 PMC affirmative votes.

Thanks,

Release Manager

[1] link

[2] link

[3] https://dist.apache.org/repos/dist/release/incubator/hudi/KEYS

[4] link

[5] link

[6] link

If there are any issues found in the release candidate, reply on the vote thread to cancel the vote, and there’s no need to wait 72 hours if any issues found.
Proceed to the Fix Issues step below and address the problem. However, some issues don’t require cancellation. For example, if an issue is found in the
website, just correct it on the spot and the vote can continue as-is.

https://repository.apache.org/content/repositories/
https://dist.apache.org/repos/dist/dev/incubator/hudi/
http://www.apache.org/foundation/voting.html
http://www.apache.org/foundation/voting.html
mailto:dev@hudi.apache.org
http://dist.apache.org
https://dist.apache.org/repos/dist/release/incubator/hudi/KEYS

1.

1.

1.

2.

3.
a.

b.
i.

c.
i.

d.

i.

If there are no issues, reply on the vote thread to close the voting. Then, tally the votes in a separate email. Here’s an email template; please adjust as you
see fit.

From: Release Manager

To: dev@hudi.apache.org

Subject: [RESULT] [VOTE] Release 1.2.3, release candidate #3

I'm happy to announce that we have unanimously approved this release.

There are XXX approving votes, XXX of which are binding:

* approver 1

* approver 2

* approver 3

* approver 4

There are no disapproving votes.

Thanks everyone!

Please look at previous examples in previous releases. For example : Please see examples here : , and voting in dev voting in general result of voting

Checklist to proceed to the finalization step

Community votes to release the proposed candidate, with at least three approving PMC votes

Fix any issues

Any issues identified during the community review and vote should be fixed in this step.

Code changes should be proposed as standard pull requests to the master branch and reviewed using the normal contributing process. Then, relevant
changes should be cherry-picked into the release branch. The cherry-pick commits should then be proposed as the pull requests against the release
branch, again reviewed and merged using the normal contributing process.

Once all issues have been resolved, you should go back and build a new release candidate with these changes.

Checklist to proceed to the next step

Issues identified during vote have been resolved, with fixes committed to the release branch.

Finalize the release

Once the release candidate has been reviewed and approved by the community, the release should be finalized. This involves the final deployment of the
release candidate to the release repositories, merging of the website changes, etc.

Current follow the below steps to finalize the release.

change the version from ${RELEASE_VERSION}-incubating-rc${RC_NUM} to ${RELEASE_VERSION}-incubating against release branch, use
command `mvn versions:set -DnewVersion=${RELEASE_VERSION}-incubating`, e.g. change 0.5.1-incubating-rc1 to 0.5.1-incubating.
Repeat the steps from Generate Source Release(f) to Stage source releases on (i). dist.apache.org Note that make sure remove the -
rc${RC_NUM} suffix when repeat the above steps. and please also verify the steps.
One more step is to deploy source code to release dist. .https://dist.apache.org/repos/dist/release/incubator/hudi

svn checkout --depth=immediates, https://dist.apache.org/repos/dist/release/incubator/hudi if you would not checkout, please try svn
checkout again.https://dist.apache.org/repos/dist/release/incubator/hudi
Make a directory for the new release:

 mkdir hudi/hudi-${RELEASE_VERSION}-incubating
Copy Hudi source distributions, hashes, and GPG signature:

mv <hudi-dir>/src_release/* hudi/hudi-${RELEASE_VERSION}-incubating
Add and commit all the files.

mailto:dev@hudi.apache.org
https://lists.apache.org/thread.html/617cad3116308821f845d3be5d71e135fdcbb82b4533c53941a0fda8@%3Cdev.hudi.apache.org%3E
https://lists.apache.org/thread.html/14a4c83df04f5bde799dfc904e6fdc67db225ff4e91d945f2e29dae9@%3Cgeneral.incubator.apache.org%3E
https://lists.apache.org/thread.html/19bbef3a0a5d660b3bd5791346c6b30855443b7b0069e26a81b57ae4@%3Cgeneral.incubator.apache.org%3E
http://dist.apache.org
https://dist.apache.org/repos/dist/dev/incubator/hudi
https://dist.apache.org/repos/dist/dev/incubator/hudi
https://dist.apache.org/repos/dist/dev/incubator/hudi

3.

d.

i.
ii.
iii.

e.
4.

5.

6.
7.

1.
2.
3.

cd hudi
svn add hudi-${RELEASE_VERSION}-incubating
svn commit

Verify that files are present
Use the Apache Nexus repository to release the staged binary artifacts to the Maven Central repository. In the Staging Repositories section,
find the relevant release candidate orgapachehudi-XXX entry and click Release. Drop all other release candidates that are not being released.
In Jira, go to Releases <Release Version> and ensure that all Jiras for the release are 'Closed' state, if not transition all 'Resolved' jiras to
'Closed'.
Finalize the Release in Jira by providing the release date.
Update in the root of the project via sending a PR like .DOAP file this one

Steps to cut doc version and update website.

Follow the for cutting a doc for this new release.instructions
Build the site locally and ensure the new doc version is available as intended.
Update site using instructions

Promote the release

Once the release has been finalized, the last step of the process is to promote the release within the project and beyond. Please wait for 24h after
finalizing the release in accordance with the . ASF release policy

Apache mailing lists

Announce on the dev@ mailing list that the release has been finished.

Announce on the release on the user@ mailing list, listing major improvements and contributions.

Announce the release on the mailing lists. announce@apache.org , general@incubator.apache.org

Considering that announce@ ML has restrictions on what is published, we can follow this email template:

https://dist.apache.org/repos/dist/release/incubator/hudi
https://github.com/apache/incubator-hudi/blob/master/doap_HUDI.rdf
https://github.com/apache/incubator-hudi/pull/1448
https://github.com/apache/incubator-hudi/blob/asf-site/README.md#adding-docs-for-version
https://github.com/apache/incubator-hudi/blob/asf-site/README.md#building-docs
https://github.com/apache/incubator-hudi/blob/asf-site/README.md#updating-site
http://www.apache.org/legal/release-policy.html#release-announcements
mailto:announce@apache.org
mailto:general@apache.org

From: Release Manager

To: announce@hudi.apache.org

Subject: [ANNOUNCE] Apache Hudi (incubating) <VERSION> released

The Apache Hudi(incubating) team is pleased to announce the release of Apache

Hudi incubating <VERSION>.

Apache Hudi (incubating) (pronounced Hoodie) stands for Hadoop Upserts Deletes

and Incrementals. Apache Hudi (incubating) manages storage of large analytical

datasets on DFS (Cloud stores, HDFS or any Hadoop FileSystem compatible storage)

and provides the ability to query them.

This release comes xxx months after xxx. It includes more than
xxx resolved issues, comprising of a few new features as well as
general improvements and bug-fixes. It includes support for
xxx, xxx, xxx, and many more bug fixes and improvements.

You can start using it in Maven by simply updating your dependency to:

<dependency>
<groupId>org.apache.hudi</groupId>
<artifactId>hudi-core</artifactId>
<version><VERSION>-incubating</version>
</dependency>

If you'd like to download the source release, you can find it here:

https://github.com/apache/incubator-hudi/releases/tag/release-<VERSION>-incubating

You can read more about the release (including release notes) here:

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12322822&version=<JIRA_VERSION>

We welcome your help and feedback. For more information on how to
report problems, and to get involved, visit the project website at:

http://hudi.apache.org/

Thanks to everyone involved!

XXX

Recordkeeping

Use to seed the information about the release into future project reports. reporter.apache.org

Social media

Tweet, post on Facebook, LinkedIn, and other platforms. Ask other contributors to do the same.

Improve the process

It is important that we improve the release processes over time. Once you’ve finished the release, please take a step back and look what areas of this
process and be improved. Perhaps some part of the process can be simplified. Perhaps parts of this guide can be clarified.

If we have specific ideas, please start a discussion on the dev@ mailing list and/or propose a pull request to update this guide. Thanks!

mailto:announce@hudi.apache.org
http://hudi.apache.org/
http://reporter.apache.org/

	Apache Hudi - Release Guide (Pre Graduation)

