
ActionMapper
32

Description

The ActionMapper interface provides a mapping between HTTP requests and action invocation requests and vice-versa.

When given an HttpServletRequest, the ActionMapper may return null if no action invocation request matches or it may return an {{ActionMapping}} that
describes an action invocation for the framework to try.

The ActionMapper is not required to guarantee that the {{ActionMapping}} returned be a real action or otherwise ensure a valid request. Accordingly, most
ActionMappers do not need to consult the Struts configuration just to determine if a request should be mapped.

Just as requests can be mapped from HTTP to an action invocation, the opposite is true as well. However, because HTTP requests (when shown in HTTP
responses) must be in String form, a String is returned rather than an actual request object.

DefaultActionMapper

Default action mapper implementation, using the standard (where ext usually) pattern. The extension is looked up from the *.[ext] action
Struts configuration key {{struts.action.extension}}.

To help with dealing with buttons and other related requirements, this mapper (and other {{ActionMapper}}s, we hope) has the ability to name a button with
some predefined prefix and have that button name alter the execution behaviour. The four prefixes are:

Method prefix - method:default
Action prefix - action:dashboard

In addition to these four prefixes, this mapper also understands the action naming pattern of in either the extension form (eg:) foo!bar foo!bar.action
or in the prefix form (eg:). This syntax tells this mapper to map to the action named and the method .action:foo!bar foo bar

Method prefix

With method-prefix, instead of calling baz action's method (by default if it isn't overridden in to be something else), the execute() struts.xml
baz action's will be called. A very elegant way determine which button is clicked. Alternatively, one would have submit button set anotherMethod()
a particular value on the action when clicked, and the method decides on what to do with the setted value depending on which button is execute()
clicked.

xml<!-- START SNIPPET: method-example --> <s:form action="baz"> <s:textfield label="Enter your name" name="person.name"/> <s:submit value="
Create person"/> <s:submit method="anotherMethod" value="Cancel"/> </s:form> <!-- END SNIPPET: method-example -->

Action prefix

With action-prefix, instead of executing baz action's method (by default if it isn't overridden in struts.xml to be something else), execute()
the anotherAction action's method (assuming again if it isn't overridden with something else in) will be executed.execute() struts.xml

xml<!-- START SNIPPET: action-example --> <s:form action="baz"> <s:textfield label="Enter your name" name="person.name"/> <s:submit value="Create
person"/> <s:submit action="anotherAction" value="Cancel"/> </s:form> <!-- END SNIPPET: action-example -->

Allowed action name RegEx

By default the mapper will check if extracted action name matches provided RegEx, i.e. . You redefine this RegEx by defining a [a-zA-Z0-9._!/\-]*
constant in named . If action name doesn't match the RegEx a default action name will be returned struts.xml struts.allowed.action.names
which is defined as . You can also redefine this by specifying constant in index struts.default.action.name struts.xml

Allowed method name RegEx

The same logic as above is used for extracted methods, the default RegEx is used to check if method is allowed, you can change ([a-zA-Z_]*[0-9]*)
this by setting constant in . If method doesn't match the RegEx a default method is returned, i.e. struts.allowed.method.names struts.xml execute
. This can be changed by defining constant in .struts.default.method.name struts.xml

Please note that this funcionallity only works when is enabled.Dynamic Method Invocation

Custom ActionMapper

You can define your own ActionMapper by implementing then configuring Struts 2 to org.apache.struts2.dispatcher.mapper.ActionMapper
use the new class in struts.xml

xml<bean type="org.apache.struts2.dispatcher.mapper.ActionMapper" name="mymapper" class="com.mycompany.myapp.MyActionMapper" /> <constant
name="struts.mapper.class" value="mymapper" />

https://cwiki.apache.org/confluence/display/WW/Action+Configuration#ActionConfiguration-DynamicMethodInvocation

Possible uses of the ActionMapper include defining your own, cleaner namespaces, such as URLs like , which would be similar to a request to /person/1 /g
 using the DefaultActionMapper.etPerson.action?personID=1

CompositeActionMapper

A composite action mapper that is capable of delegating to a series of if the former failed to obtained a valid or uri.ActionMapper ActionMapping

It is configured through . For example, with the following entries in struts.xmlstruts.xml

xml<constant name="struts.mapper.class" value="composite" /> <constant name="struts.mapper.composite" value="struts,restful,restful2" />

When or CompositeActionMapper#getMapping(HttpServletRequest, ConfigurationManager) CompositeActionMapper#getUriFromA
 is invoked, would go through these s in sequence starting from ctionMapping(ActionMapping) CompositeActionMapper ActionMapper ActionMapp

 identified by , followed by and finally (in this er struts.mapper.composite.1 struts.mapper.composite.2 struts.mapper.composite.3
case) until either one of the return a valid result (not null) or it runs out of in which case it will just return null for both ActionMapper ActionMapper Composi

 and teActionMapper#getMapping(HttpServletRequest, ConfigurationManager) CompositeActionMapper#getUriFromActionMappi
 methods.ng(ActionMapping)

For example with the following in struts.xml:

xml<constant name="struts.mapper.class" value="composite" /> <constant name="struts.mapper.composite" value="struts,restful" />

CompositeActionMapper will be configured with 2 ActionMapper, namely "struts" which is org.apache.struts2.dispatcher.mapper.
 and "restful" which is . DefaultActionMapper org.apache.struts2.dispatcher.mapper.RestfulActionMapperRestfulActionMapper Com

 would consult each of them in order described above.positeActionMapper

PrefixBasedActionMapper

{snippet:id=description|javadoc=true|url=org.apache.struts2.dispatcher.mapper.PrefixBasedActionMapper}

PrefixBasedActionProxyFactory

{snippet:id=description|javadoc=true|url=org.apache.struts2.factory.PrefixBasedActionProxyFactory}

ActionMapper and ActionMapping objects

The ActionMapper fetches the ActionMapping object corresponding to a given request. Essentially, the ActionMapping is a data transfer object that collects
together details such as the Action class and method to execute. The mapping is utilized by the Dispatcher and various user interface components. It is
customizable through entry in or . Note that the value of this constant is the name of the struts.mapper.class struts.properties struts.xml
bean of the new mapper.

Customize
Custom ActionMapper must implement ActionMapper interface and have a default constructor.
xml<bean type="org.apache.struts2.dispatcher.mapper.ActionMapper" name="mymapper" class="com.mycompany.myapp.MyActionMapper" /> <constant
name="struts.mapper.class" value="mymapper" /> javapublic class MyCustomActionMapper implements ActionMapper { public ActionMapping getMapping
(HttpServletRequest request, ConfigurationManager configManager) { } public String getUriFromActionMapping(ActionMapping mapping) { } }

 See also: RestfulActionMapper

Next: Action Proxy & ActionProxy Factory

https://cwiki.apache.org/confluence/display/WW/ActionMapping
https://cwiki.apache.org/confluence/display/WW/struts.xml
https://cwiki.apache.org/confluence/display/WW/RestfulActionMapper
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=27474

	ActionMapper

