Chemistry and OpenCMIS Technical Comparison

This is a technical comparison of the interfaces and classes present in both Chemistry and OpenCMIS.

Concepts

In Chemistry the session and the Connect i on are the same thing. The connection has different implementations depending on the way it's connected to
an underlying protocol. The connection implements methods from the high-level API, and also gives access to the low-level SPI implementing different
methods.

In OpenCMIS the Sessi on is a semi-generic context-like object (Per si st ent Sessi onl npl). Eventually, there will be two Sessi on implementations. In
the persistent model (almost) all changes are immediately passed to the repository. In the transient model all changes are cached until save() is called on
the Sessi on object. A Sessi on can be "connected" using parameters to instantiate internally a low-level provider (Cm sPr ovi der). The provider holds

configuration parameters that enable it to create a low-level SPI through a Cni sSpi Fact or y. Through the SPI you can get to the various SPI * Ser vi ce
implementations.

Repository access

In Chemistry you get to a repository instance based on general repository parameters, and from it you can open connections with a username and
password. The repository instance can be introspected (types, etc) without opening a session.

In OpenCMIS, you get a session factory, from which you open a session, from which you can get to the repository info (types, etc.). All connection
parameters are passed to the cr eat eSessi on() method, including repository URL.

Registering a repository

® Chemistry:

Map<String, Serializable> paranms = ...; // URL, optional user, password
Reposi toryService repositoryService = new APPRepositoryService(url, parans);
Reposi t or yManager . get | nst ance() . regi ster Servi ce(repositoryService);

® OpenCMIS
No global registration. A JNDI-based method or dependency injection is suggested but not implemented.

Getting a repository / session factory

® Chemistry

Repository repository = RepositoryManager. getlnstance().getRepository("nyrepo");

® OpenCMIS

Sessi onFactory sessi onFactory = Sessi onFactoryl npl. new nstance();

Getting a session / connection

® Chemistry

Map<String, String> parans = ...; // user, password
Connection conn = repository.getConnection(parans);

® OpenCMIS

Map<String, String> parans = ...; // URL, user, password
Sessi on session = sessionFactory. createSession(paraneters);

Internal layer hierarchy (OpenCMIS)

(All classes and interfaces in bold are for public use. Everything else belongs to the internal machinery.)

From an

Session
Main interface of the client API.

SessionFactory
Interface of the session factory class.

SessionFactorylmpl
Factory class that creates Sessi on objects from a given configuration.

PersistentSessionimpl
Implementation of the Sessi on interface that follows the persistent model. Should be created with Sessi onFact or yl npl .

TransientSessionimpl (does not exist, yet)
Implementation of the Sessi on interface that follows the transient model. Should be created with Sessi onFact oryl npl .

CmisProviderHelper
Internal helper class that creates a Cmi sProvi der object. It contains code that is shared by Per si st ent Sessi onl npl and Tr ansi ent Sessi
onl npl . It shouldn't be used by anybody else.

CmisProvider
The low-level client interface.

CmisProviderimpl
Implementation of the low-level client interface.

CmisProviderFactory
Factory class for Cm sPr ovi der objects. Although Cmi sProvi der | npl can be instantiated directly, this factory sets some reasonable defaults
and does a sanity check on the configuration. It is recommended to use this factory to create a Ci sPr ovi der object.

CmisSpi
Interface of the binding implementations. This interface is only interesting for binding developers. Applications use the Cmi sPr ovi der or Sessi or
interfaces that hide the binding.

CmisAtomPubSpi
AtomPub binding implementation.

CmisWebServicesSpi
Web Services binding implementation.

application point of view it easy to use:

If you want to use the client API, create a Sessi on object with Sessi onFact oryl npl and don't bother about the rest.
If you want to use the low-level provider API, create a Crmi sPr ovi der object with Cmi sProvi der Fact ory and don't bother about the rest.

High-level APIs

From a connection/session you can get the root folder and express high-level operations

Chemistry

Fol der root = conn. get Root Fol der ();
Li st <CM SQbj ect> children = root.getChildren();

OpenCMIS

Fol der root = session. get Root Fol der();
Pagi ngLi st <Cm sQhj ect> |ist = root.getChildren(1);

Base object

Contains getters and setters for properties, with convenience methods.
Contains methods like del et e() etc. that pass through to the SPI/provider.

Chemistry
The base interface is CM SQbj ect . It flushes changes on save() .

OpenCMIS
The base interface is Cmi sbj ect . It flushes property changes on updat ePr operti es().

Specialized Objects
Implement additional object-oriented methods depending on the interfaces.

® Chemistry
Fol der, Docunent, Rel ati onshi p, Pol i cy

® OpenCMIS
Fi | eabl eCm sObj ect, Fol der, Docunent, Rel ati onshi p, Pol i cy

Paging

® Chemistry
ListPage: a page
= List + getHasMoreltems + getNumltems
Implemented by SimpleListPage. This is a data transfert object.

® OpenCMIS
PagingList: a list of pages which are themselves lists
= lterable<List> + getNumltems + getMaxltemsPerPage + size + get(page)
AbstractPagingList is the base class. This is an active object that can fetch new pages by implementing a fetchPage() method that returns a
FetchResult (which is equivalent to Chemistry's ListPage). It also has a LRU cache for pages which is disabled by default.

Provider APIs

This is called "SPI" in Chemistry, and "Provider" in OpenCMIS.

Services interfaces

® Chemistry
All CMIS services are implemented under the single interface SPI . The SPI uses classes and interfaces designed for Java.

® OpenCMIS
From a provider you get the various CMIS services as different interfaces (Reposi t or ySer vi ce, Obj ect Servi ce, Navi gati onServi ce,
etc.) using getters. The interfaces and classes are generic and reflect the CMIS schema.

High-level vs low-level vs implementation

® Chemistry
The high-level and SPI interfaces are mutualized (ex: org.apache.chemistry.RepositoryInfo).
Florian> For some objects there are different interfaces on these two levels. For example, the step from Obj ect Ent ry to CM SCbj ect is
comparable to OpenCMIS' step from the provider API to the client API.
Florian> JAXB objects will be necessary for Web Services, similar to OpenCMIS.

® OpenCMIS
For the same concept OpenCMIS manipulates three different interfaces and their implementations:
o the one in the high-level client API (ex: or g. apache. opencni s. cl i ent. api . reposi t ory. Reposi t or yl nf o, convenient access
to data),
© the one in the provider (ex: or g. apache. opencmi s. conmons. provi der. Reposi t or yl nf oDat a, access to all extension points),
© the one from JAXB (Cmi sReposi t oryl nf oType).

Common method parameters

® Chemistry
The SPI bundles together a number of call parameters that are used often together: | ncl usi on contains properties and rendition filters,
relationship inclusion, flags for allowable actions, policies, acls. An | ncl usi on is passed to the relevant SPI methods.

® OpenCMIS
A default Oper at i onCont ext on the session is used to specify these call parameters. A variant of the high-level methods taking an explicit Oper
at i onCont ext is also available. Furthermore, Oper at i onCont ext controls the caching behavior of the objects retrieved by the call. In the
provider interfaces everything is explicit, following the CMIS specification.

Object data
The base object contains information about one object: properties, allowable actions, relationships, renditions, etc.
® Chemistry

bj ect Ent ry is the basic class.
It also contains change info and path segments, depending on how it was retrieved.

® OpenCMIS
Qoj ect Dat a is the basic class.

To provide it context, it is used by delegation is more complex constructions: Obj ect | nFol der Dat a, Obj ect | nFol der Cont ai ner, Gbj ectln
Fol der Li st, Obj ect Par ent Dat a, Obj ect Li st , etc. thus reflect the CMIS schema and allow access to all extension points.

Various enums
Relationship direction:
® Chemistry
Defines them according to best Java use. For instance Rel at i onshi pDi r ecti on can be 'source’, 'target', 'either' or null. There is no separate |

ncl udeRel ati onshi ps.

® OpenCMIS
Mimicks JAXB. Rel ati onshi pDi recti on and | ncl udeRel ati onshi ps are different.

Property type:

® Chemistry
Pr oper t yType is a class allowing definition of new types, for specialized backends.

® OpenCMIS
Pr oper t yType is an enum following JAXB.

Allowable actions:

® Chemistry
Al | owabl eAct i ons is a set of QNanes.

® OpenCMIS
Al | owabl eAct i ons is a map from St ri ng (non-namespaced) to Bool ean.

	Chemistry and OpenCMIS Technical Comparison

