
Chemistry and OpenCMIS Technical Comparison
This is a technical comparison of the interfaces and classes present in both Chemistry and OpenCMIS.

Concepts
In Chemistry the session and the are the same thing. The connection has different implementations depending on the way it's connected to Connection
an underlying protocol. The connection implements methods from the high-level API, and also gives access to the low-level SPI implementing different
methods.

In OpenCMIS the is a semi-generic context-like object (). Eventually, there will be two implementations. In Session PersistentSessionImpl Session
the persistent model (almost) all changes are immediately passed to the repository. In the transient model all changes are cached until is called on save()
the object. A can be "connected" using parameters to instantiate internally a low-level provider (). The provider holds Session Session CmisProvider
configuration parameters that enable it to create a low-level SPI through a . Through the SPI you can get to the various SPI CmisSpiFactory *Service
implementations.

Repository access
In Chemistry you get to a repository instance based on general repository parameters, and from it you can open connections with a username and
password. The repository instance can be introspected (types, etc) without opening a session.

In OpenCMIS, you get a session factory, from which you open a session, from which you can get to the repository info (types, etc.). All connection
parameters are passed to the method, including repository URL.createSession()

Registering a repository

Chemistry:

Map<String, Serializable> params = ...; // URL, optional user, password
RepositoryService repositoryService = new APPRepositoryService(url, params);
RepositoryManager.getInstance().registerService(repositoryService);

OpenCMIS
No global registration. A JNDI-based method or dependency injection is suggested but not implemented.

Getting a repository / session factory

Chemistry

Repository repository = RepositoryManager.getInstance().getRepository("myrepo");

OpenCMIS

SessionFactory sessionFactory = SessionFactoryImpl.newInstance();

Getting a session / connection

Chemistry

Map<String, String> params = ...; // user, password
Connection conn = repository.getConnection(params);

OpenCMIS

Map<String, String> params = ...; // URL, user, password
Session session = sessionFactory.createSession(parameters);

Internal layer hierarchy (OpenCMIS)

(All classes and interfaces in bold are for public use. Everything else belongs to the internal machinery.)

Session
Main interface of the client API.

SessionFactory
Interface of the session factory class.

SessionFactoryImpl
Factory class that creates objects from a given configuration.Session

PersistentSessionImpl
Implementation of the interface that follows the persistent model. Should be created with .Session SessionFactoryImpl

TransientSessionImpl (does not exist, yet)
Implementation of the interface that follows the transient model. Should be created with .Session SessionFactoryImpl

CmisProviderHelper
Internal helper class that creates a object. It contains code that is shared by and CmisProvider PersistentSessionImpl TransientSessi

. It shouldn't be used by anybody else.onImpl

CmisProvider
The low-level client interface.

CmisProviderImpl
Implementation of the low-level client interface.

CmisProviderFactory
Factory class for objects. Although can be instantiated directly, this factory sets some reasonable defaults CmisProvider CmisProviderImpl
and does a sanity check on the configuration. It is recommended to use this factory to create a object.CmisProvider

CmisSpi
Interface of the binding implementations. This interface is only interesting for binding developers. Applications use the or CmisProvider Session
interfaces that hide the binding.

CmisAtomPubSpi
AtomPub binding implementation.

CmisWebServicesSpi
Web Services binding implementation.

From an application point of view it easy to use:

If you want to use the client API, create a object with and don't bother about the rest.Session SessionFactoryImpl
If you want to use the low-level provider API, create a object with and don't bother about the rest.CmisProvider CmisProviderFactory

High-level APIs
From a connection/session you can get the root folder and express high-level operations

Chemistry

Folder root = conn.getRootFolder();
List<CMISObject> children = root.getChildren();

OpenCMIS

Folder root = session.getRootFolder();
PagingList<CmisObject> list = root.getChildren(1);

Base object

Contains getters and setters for properties, with convenience methods.
Contains methods like etc. that pass through to the SPI/provider.delete()

Chemistry
The base interface is . It flushes changes on .CMISObject save()

OpenCMIS
The base interface is . It flushes property changes on .CmisObject updateProperties()

Specialized Objects

Implement additional object-oriented methods depending on the interfaces.

Chemistry
, , , Folder Document Relationship Policy

OpenCMIS
, , , , FileableCmisObject Folder Document Relationship Policy

Paging

Chemistry
ListPage: a page
= List + getHasMoreItems + getNumItems
Implemented by SimpleListPage. This is a data transfert object.

OpenCMIS
PagingList: a list of pages which are themselves lists
= Iterable<List> + getNumItems + getMaxItemsPerPage + size + get(page)
AbstractPagingList is the base class. This is an active object that can fetch new pages by implementing a fetchPage() method that returns a
FetchResult (which is equivalent to Chemistry's ListPage). It also has a LRU cache for pages which is disabled by default.

Provider APIs
This is called "SPI" in Chemistry, and "Provider" in OpenCMIS.

Services interfaces

Chemistry
All CMIS services are implemented under the single interface . The SPI uses classes and interfaces designed for Java.SPI

OpenCMIS
From a provider you get the various CMIS services as different interfaces (, , , RepositoryService ObjectService NavigationService
etc.) using getters. The interfaces and classes are generic and reflect the CMIS schema.

High-level vs low-level vs implementation

Chemistry
The high-level and SPI interfaces are mutualized (ex: org.apache.chemistry.RepositoryInfo).
Florian> For some objects there are different interfaces on these two levels. For example, the step from to is ObjectEntry CMISObject
comparable to OpenCMIS' step from the provider API to the client API.
Florian> JAXB objects will be necessary for Web Services, similar to OpenCMIS.

OpenCMIS
For the same concept OpenCMIS manipulates three different interfaces and their implementations:

the one in the high-level client API (ex: , convenient access org.apache.opencmis.client.api.repository.RepositoryInfo
to data),
the one in the provider (ex: , access to all extension points),org.apache.opencmis.commons.provider.RepositoryInfoData
the one from JAXB ().CmisRepositoryInfoType

Common method parameters

Chemistry
The SPI bundles together a number of call parameters that are used often together: contains properties and rendition filters, Inclusion
relationship inclusion, flags for allowable actions, policies, acls. An is passed to the relevant SPI methods.Inclusion

OpenCMIS
A default on the session is used to specify these call parameters. A variant of the high-level methods taking an explicit OperationContext Oper

 is also available. Furthermore, controls the caching behavior of the objects retrieved by the call. In the ationContext OperationContext
provider interfaces everything is explicit, following the CMIS specification.

Object data

The base object contains information about one object: properties, allowable actions, relationships, renditions, etc.

Chemistry
 is the basic class.ObjectEntry

It also contains change info and path segments, depending on how it was retrieved.

OpenCMIS
 is the basic class.ObjectData

To provide it context, it is used by delegation is more complex constructions: , , ObjectInFolderData ObjectInFolderContainer ObjectIn
, , , etc. thus reflect the CMIS schema and allow access to all extension points.FolderList ObjectParentData ObjectList

Various enums

Relationship direction:

Chemistry
Defines them according to best Java use. For instance can be 'source', 'target', 'either' or null. There is no separate RelationshipDirection I

.ncludeRelationships

OpenCMIS
Mimicks JAXB. and are different.RelationshipDirection IncludeRelationships

Property type:

Chemistry
 is a class allowing definition of new types, for specialized backends.PropertyType

OpenCMIS
 is an enum following JAXB.PropertyType

Allowable actions:

Chemistry
 is a set of .AllowableActions QNames

OpenCMIS
 is a map from (non-namespaced) to .AllowableActions String Boolean

	Chemistry and OpenCMIS Technical Comparison

