
KIP-617: Allow Kafka Streams State Stores to be iterated
backwards

Status
Motivation

Reference issues
Proposed Changes

Reverse Key Ranges
Backward Time Ranges

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Adopted

Discussion thread: here

Vote thread: here

JIRA: - KAFKA-9929 Getting issue details... STATUS

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Fetching range of records from Kafka Streams state stores comes with an iterator to traverse elements , e.g from oldest to newest ReadOnlyWindowStore

 mentions:#fetch(K key, long fromTime, long toTime)

For each key, the iterator guarantees ordering of windows, ”starting from the oldest/earliest

Similar guarantees are provided on other fetch and range operations. But in the case of ranges, there are some nuances regarding order:key

The returned iterator must be safe from {@link java.util.ConcurrentModificationException}s and must not return null values. No
.ordering guarantees are provided

Ordering is not guaranteed as backing structure is based on maps keyed by . Though, support o.a.k.common.utils.Bytes Bytes Lexicographic
byte array comparison, which defines ordering in-memory and stores.RocksDB

These APIs constraint the usage of local state store for some use-cases:

When storing records on time windows, or records by key; and an operation wants to return the values inserted withing a time range containing last N M
records: Currently there is no alternative other than iterating records from oldest to newest–traversing records, where » .M M N

If a option becomes available, then we could start from the latest record within a time range and go , returning the first backward read direction backwards N
value more efficiently.

At , we are planning to use this feature to replace two KeyValueStores (one for traces indexed by id, and another with trace_ids Zipkin Kafka-based storage
indexed by timestamp) for one WindowStore. A backward read direction will allow to support queries like: “within this time range, find the last traces that
match this criteria”, and return latest values quickly.

Internally, both implementations: persistent (RocksDB), and in-memory (TreeMap) support reverse/descending iteration:

https://mail-archives.apache.org/mod_mbox/kafka-dev/202005.mbox/%3cb273c113-5062-dd92-6901-21abba090013@gmail.com%3e
https://lists.apache.org/thread.html/r1a9e20afa96c4040f7ad38269496c99bf4863a58109c5b5e8e14be79%40%3Cdev.kafka.apache.org%3E
https://issues.apache.org/jira/browse/KAFKA-9929
http://localhost:1313/drafts/kip-617/github.com/openzipkin-contrib/zipkin-storage-kafka

final RocksIterator iter = db.newIterator();
iter.seekToFirst();
iter.next();
final RocksIterator reverse = db.newIterator();
reverse.seekToLast();
reverse.prev();

final TreeMap<String, String> map = new TreeMap<>();
final NavigableSet<String> nav = map.navigableKeySet();
final NavigableSet<String> rev = map.descendingKeySet();

Reference issues

https://issues.apache.org/jira/browse/KAFKA-9929
https://issues.apache.org/jira/browse/KAFKA-4212

Proposed Changes
There are 2 important ranges in Kafka Streams Stores:

Key Range
Time Range

Reverse Key Ranges

Extend existing interface for reverse KeyValueStore

public interface ReadOnlyKeyValueStore<K, V> {
 default KeyValueIterator<K, V> reverseRange(K from, K to) {
 throw new UnsupportedOperationException();
 }
 default KeyValueIterator<K, V> reverseAll() {
 throw new UnsupportedOperationException();
 }
}

Backward Time Ranges

Window and Session stores are based on a set of KeyValue Stores (Segments) organized by a time-based index. Therefore, for these stores time-range is
more important than key-range to lookup for values.

Existing stores will be extended with backward methods:

For SessionStore/ReadOnlySessionStore: findSessions and findSession operations will be moved from SessionStore to ReadOnlySessionStore
to align with how other stores are design.

https://issues.apache.org/jira/browse/KAFKA-9929
https://issues.apache.org/jira/browse/KAFKA-4212

public interface ReadOnlyWindowStore<K, V> {
 default WindowStoreIterator<V> backwardFetch(K key, Instant from, Instant to) throws
IllegalArgumentException {
 throw new UnsupportedOperationException();
 }

 default KeyValueIterator<Windowed<K>, V> backwardFetch(K from, K to, Instant fromTime, Instant toTime)
throws IllegalArgumentException {
 throw new UnsupportedOperationException();
 }

 default KeyValueIterator<Windowed<K>, V> backwardAll() {
 throw new UnsupportedOperationException();
 }

 default KeyValueIterator<Windowed<K>, V> backwardFetchAll(Instant from, Instant to) throws
IllegalArgumentException {
 throw new UnsupportedOperationException();
 }
}

public interface ReadOnlySessionStore<K, AGG> {
 // Moving read functions from SessionStore to ReadOnlySessionStore
 default KeyValueIterator<Windowed<K>, AGG> findSessions(final K key, final long earliestSessionEndTime,
final long latestSessionStartTime) {
 throw new UnsupportedOperationException("Moved from SessionStore");
 }

 default KeyValueIterator<Windowed<K>, AGG> findSessions(final K keyFrom, final K keyTo, final long
earliestSessionEndTime, final long latestSessionStartTime) {
 throw new UnsupportedOperationException("Moved from SessionStore");
 }

 default AGG fetchSession(final K key, final long startTime, final long endTime) {
 throw new UnsupportedOperationException("Moved from SessionStore");
 }

 // New
 default KeyValueIterator<Windowed<K>, AGG> backwardFindSessions(final K key, final long
earliestSessionEndTime, final long latestSessionStartTime) {
 throw new UnsupportedOperationException();
 }

 default KeyValueIterator<Windowed<K>, AGG> backwardFindSessions(final K keyFrom, final K keyTo, final long
earliestSessionEndTime, final long latestSessionStartTime) {
 throw new UnsupportedOperationException();
 }

 default KeyValueIterator<Windowed<K>, AGG> backwardFetch(final K key) {
 throw new UnsupportedOperationException();
 }
 default KeyValueIterator<Windowed<K>, AGG> backwardFetch(final K from, final K to) {
 throw new UnsupportedOperationException();
 }
}

Compatibility, Deprecation, and Migration Plan
New methods will have default implementations to avoid affecting current implementations.

Rejected Alternatives

Create a parallel hierarchy of interfaces for backward operation. Even though this option seems like the best way to extend functionality, it was
proved to not work in practice in KIP-614 discussion as interfaces get wrapped in different layers (Metered, Caching, Logging) so all the current
hierarchy to create stores with Kafka Streams DSL will have to be duplicated.
Initially it was considered to have additional parameter on all readOnlyStore methods e.g. Store#fetch(keyFrom, keyTo, timeFrom, timeTo,
ReadDirection.FORWARD|BACKWARD), but has been declines as passing arguments in inverse is more intuitive. As this could cause
unexpected effects in future versions, a flag has been added to overcome this.
Implicit ordering by flipping and variables has been discouraged in favor of a more explicit approach based on new interfaces that make from to
explicit the availability of reverse and backward fetch operations.

	KIP-617: Allow Kafka Streams State Stores to be iterated backwards

