KIP-656: MirrorMaker2 Exactly-once Semantics
Status

Current state: Draft

Discussion thread: https://lists.apache.org/thread.html/r9d1c89b871792655cd14{f585980bb0ace639d85d9200e239cc0elcd%40%3Cdev.kafka.apache.
org%3E

Voting thread: https://lists.apache.org/thread.html/rbfe08bfb15e14dbl4c54d1ca5¢c86bfcd17dc952084ad0addec8255b6%40%3Cdev.kafka.apache.org%3E
JIRA: KAFKA—0339 - MirrorMaker2 Exactly-once Semantics | RESOLVED

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

MirrorMaker2 is currently implemented on Kafka Connect Framework, more specifically the Source Connector / Task, which do not provide exactly-once
semantics (EOS) out-of-the-box, as discussed in https://github.com/confluentinc/kafka-connect-jdbc/issues/461, https://github.com/apache/kafka/pull/5553,

KAFKA-6688 - Transactional EoS for source connectors | RESOLVED | and

KAFKA-3821 - Allow Kafka Connect source tasks to produce offset without writing to topics ©PEN | Therefore current MirrorMaker2 does not

provide EOS as well.

This proposal is to provide an option to enable EOS for MirrorMaker 2 if no data loss or duplicate data is preferred. The key idea of this proposal is to
extend SinkTask with a brand new MirrorSinkTask implementation, which has an option to manage the consumer offsets in transactional way (similar
high-level idea as HDFS Sink Connector), such that the messages can be delivered across clusters:

(1) Exactly-once: by a transactional producer in MirrorSinkTask and consumer offsets are committed within a transaction by the transactional producer
OR

(2) At-least-once: by a non-transactional producer in MirrorSinkTask and consumer offsets are committed by the consumer from WorkerSinkTask
separately

The reasons to implement a brand new MirrorSinkTask that extends SinkTask, rather than working on the existing MirrorSourceTask, are the following:

® as mentioned above, Kafka Connect Source Connector / Task do not provide EOS by nature, mostly because of async and periodic source task
offset commit, which in MirorrMaker case, the "offset" is consumer offset. So this is one blocker to enable EOS without a lots of changes in Worker
SourceTask.

® MirrorSourceTask explicitly avoided using subscribe() and instead handle rebalances and new topic-partitions explicitly. While MirrorSinkTask tha
t extends SinkTask is initiated by WorkerSinkTask. WorkerSinkTask uses consumer.subscribe() in which the benefits of rebalances and auto-
detection of new topics/partitions are out-of-the-box. When the consumer or its rebalance handling is upgraded in WorkerSinkTask as part of
Kafka Connect, MirrorSinkTask will take the advantages transparently.

® Since MirrorSinkTask is a new implementation, on the other end we can fully control how a producer is created (transactional v.s. non-
transactional) and handle various Exception cases (especially in transactional mode), purely in the new implementation, rather than changing the
existing producer in WorkerSourceTask

® HDFS Sink Connector already achieved EOS, we can correctly implement MirrorSinkTask based on the methods of SinkTask by referring the
best practices from HDFS Sink Connector.

Public Interfaces

New classes and interfaces include:

MirrorMakerConfig

Name Type Default Doc
connector. string source if "source”, the existing MirrorSourceConnector will be launched. If "sink", the new MirrorSinkConnector will be launched with
type further option to enable EOS

MirrorConnectorConfig

Name Type Default Doc

transaction.producer | boolean ' false if True, EOS is enabled between consumer and producer

Proposed Changes

https://lists.apache.org/thread.html/r9d1c89b871792655cd14ff585980bb0ace639d85d9200e239cc0e1cd%40%3Cdev.kafka.apache.org%3E
https://lists.apache.org/thread.html/r9d1c89b871792655cd14ff585980bb0ace639d85d9200e239cc0e1cd%40%3Cdev.kafka.apache.org%3E
https://lists.apache.org/thread.html/rbfe08bfb15e14db14c54d1ca5c86bfcd17dc952084ad0a4dec8255b6%40%3Cdev.kafka.apache.org%3E
https://issues.apache.org/jira/browse/KAFKA-10339
https://github.com/confluentinc/kafka-connect-jdbc/issues/461
https://github.com/apache/kafka/pull/5553
https://issues.apache.org/jira/browse/KAFKA-6080
https://issues.apache.org/jira/browse/KAFKA-3821
https://github.com/apache/kafka/blob/trunk/connect/api/src/main/java/org/apache/kafka/connect/sink/SinkTask.java
https://github.com/confluentinc/kafka-connect-hdfs/blob/master/src/main/java/io/confluent/connect/hdfs/HdfsSinkTask.java
https://github.com/apache/kafka/blob/trunk/connect/runtime/src/main/java/org/apache/kafka/connect/runtime/WorkerSinkTask.java#L371
https://github.com/apache/kafka/blob/trunk/connect/runtime/src/main/java/org/apache/kafka/connect/runtime/WorkerSinkTask.java#L371
https://github.com/apache/kafka/blob/trunk/connect/api/src/main/java/org/apache/kafka/connect/sink/SinkTask.java
https://github.com/apache/kafka/blob/trunk/connect/mirror/src/main/java/org/apache/kafka/connect/mirror/MirrorSourceTask.java
https://github.com/apache/kafka/blob/trunk/connect/runtime/src/main/java/org/apache/kafka/connect/runtime/Worker.java#L576
https://github.com/apache/kafka/blob/trunk/connect/runtime/src/main/java/org/apache/kafka/connect/runtime/Worker.java#L576
https://github.com/apache/kafka/blob/trunk/connect/runtime/src/main/java/org/apache/kafka/connect/runtime/WorkerSourceTask.java
https://github.com/apache/kafka/blob/trunk/connect/runtime/src/main/java/org/apache/kafka/connect/runtime/WorkerSourceTask.java
https://github.com/apache/kafka/blob/trunk/connect/mirror/src/main/java/org/apache/kafka/connect/mirror/MirrorSourceTask.java#L93
https://github.com/apache/kafka/blob/trunk/connect/mirror/src/main/java/org/apache/kafka/connect/mirror/MirrorCheckpointConnector.java#L139
https://github.com/apache/kafka/blob/trunk/connect/mirror/src/main/java/org/apache/kafka/connect/mirror/MirrorSourceConnector.java#L230
https://github.com/apache/kafka/blob/trunk/connect/runtime/src/main/java/org/apache/kafka/connect/runtime/WorkerSinkTask.java#L295
https://github.com/apache/kafka/blob/trunk/connect/runtime/src/main/java/org/apache/kafka/connect/runtime/WorkerSourceTask.java

MirrorSinkTask
There are several key challenges to make EOS happen across clusters. Those challenges are discussed here one-by-one:

(1) in MirrorMaker case, there are source and target clusters. Normally the consumer pulls the data and stores its offsets in the source cluster, then the
producer takes over the data from the consumer and sends them to target cluster. However Kafka transaction can not happen across clusters out-of-the-
box. If we want EOS across clusters, what modifications need to be done?

A: The short answer is consumer group offsets are managed, committed by the transactional producer and are stored on the target cluster instead.

However the consumer still has to live on the source cluster in order to pull the data, but “source-of-truth” offsets are no longer stored in the source cluster.
We propose to use the following idea to rewind the consumer correctly when data mirroring task restarts or rebalances, while the “source-of-truth” of
consumer offsets are stored in the target cluster: (the pseudocode are shown in below)

® Consumer offsets are stored on the target cluster using a “fake” consumer group, that can be created programmatically as long as we know the
name of consumer group. The “fake” means there would be no actual records being consumed by the group, just offsets being stored in __consu
mer_offsets topic. However, the __consumer_offsets topic on the target cluster (managed by the “fake” consumer group) is the “source of truth”

offsets.
® With the “fake” consumer group on target cluster, MirrorSinkTask don't rely on Connect's internal offsets tracking or __consumer_offsets on the

source cluster.
® the consumer offsets are only written by the producer evolved in the transaction to the target cluster.
® all records are written in a transaction, as if in the single cluster
* when MirrorSinkTask starts or rebalances, it loads initial offsets from __consumer_offsets on the target cluster.

The outcome of the above idea:

® if the transaction succeeds, the __consumer_offsets topic on the target cluster is updated by following the current protocol of Exactly-Once

framework
® if the transaction aborts, all data records are dropped, and the __consumer_offsets topic on the target cluster is not updated.
® when MirrorSinkTask starts/restarts, it resumes at the last committed offsets, as stored in the target cluster.

Some items to pay attention in order to make above idea work correctly:

® |f consumer group already exists on source cluster, while the "fake" consumer group (with same Group Id) on the target cluster does not exist or
its offsets lower than the high watermark. To avoid duplicate data, it may need to do a one-time offline job to sync the offsets from source cluster
to target cluster.

(2) Since the offsets of the consumer group on the source cluster is NOT "source of truth" and not involved in the transaction. Are they still being updated?
Do we still need them in some cases?

A: the offsets of the consumer group on the source cluster are still being updated periodically and independently by the logics in WorkerSinkTask.
However they may be lagging behind a little, since (1) they are not involved in transaction, (2) they are periodically committed.

However, they may be still useful in some cases: (1) measure the replication lag between the upstream produce on the source cluster and MirrorMaker's
consumption. (2) restore the lost "fake" consumer group with small # of duplicate data.

The following is the pseudocode illustrates the high-level key implementation:

MirrorSinkTask

private bool ean isTransacti onal = config. getTransacti onal Producer();
private bool ean transactionlnProgress = fal se;
protected Map<TopicPartition, O fset AndMetadata> of fsetsMap = new HashMap<>();
private Set<TopicPartition> taskTopicPartitions;
private Kaf kaProducer<byte[], byte[]> producer;
private String connect Consuner G oup;

@verride
public void start(Map<String, String> props) {
config = new M rrorTaskConfi g(props);
taskTopi cPartitions = config.taskTopicPartitions();
i sTransactional = config.transactional Producer();
producer = initProducer(isTransactional);
connect Consumer Group = get Sour ceConsurer G oupl d() ;
if (isTransactional) {
| oadCont ext O f set s() ;

}
@verride

https://github.com/apache/kafka/blob/trunk/connect/runtime/src/main/java/org/apache/kafka/connect/runtime/WorkerSinkTask.java

public void open(Coll ection<TopicPartition> partitions) {
if (isTransactional) {
| oadCont ext Of f set s() ;
}

}

private void | oadContext O fsets() {
Map<Topi cPartition, O fset AndMetadata> initCOffsetsOnTarget = |istTarget Consunmer G oupOf f sets
(connect Consuner G oup) ;

Set <Topi cPartition> assignments = context.assignment();

/1 only keep the offsets of the partitions assigned to this task
Map<Topi cPartition, Long> contextOffsets = assignments.strean()
filter(x -> currentOf f sets. cont ai nsKey
(%)
.coll ect(Collectors.toMp(
X -> X, X ->currentOfsets.get(x)));

context. of fset (context O f sets);

prot ect ed Kaf kaProducer<byte[], byte[]> initProducer(bool ean isTransactional) {
Map<String, Object> producerConfig = config.targetProducerConfig();
if (isTransactional) {
String transactionld = getTransactionld();
log.info("use transactional producer with Id: {} ", transactionld);
producer Confi g. put (Producer Confi g. ACKS_ CONFI G "all");
producer Confi g. put (Producer Confi g. ENABLE_| DEMPOTENCE_CONFI G, "true");
producer Confi g. put (Producer Confi g. TRANSACTI ONAL_I D CONFI G, transactionld);
producer Confi g. put (Producer Confi g. CLI ENT_I D_CONFI G, transactionld);
}

return MrrorUtils. newProducer (producerConfig);

}

/*-k
* Per sonme articles, to avoid Producer FencedException, transaction id is suggested to set application name

+ host name
* Each MrrorSinkTask is also assigned with different set of <topic, partition> To get unique transaction

id,
* one way is to append connector nane, hostnane and string of each <topic, partition> pair
*/
protected String getTransactionld() {
return getHostNane() + "-" + getUni quePredictableStr();
}
@verride
public void put(Collection<Si nkRecord> records) {
log.info("receive {} messages from consuner", records.size());
if (records.size() == 0) {
return;
}
try {
sendBat ch(records, producer);
} catch (Rebal anceException e) {
producer. cl ose();
producer = initProducer(isTransactional);
} catch (ResendRecordsException e) {
abort Transacti on(producer);
//TODO add limted retry
sendBat ch(e. get Renmi ni ngRecords(), producer);
} catch (Throwable e) {
| og. error(getHostNane() + " terminating on exception: {}", e);
return;
}
}

private void sendBatch(Coll ection<Si nkRecord> records, KafkaProducer<byte[], byte[]> producer) {

try {
Map<Topi cPartition, List<SinkRecord> renainingRecordsvap = new HashMap<>();

of f set sMap. cl ear () ;

begi nTransact i on(producer);
Si nkRecord record;
for ((record = records.peek()) !'= null) {
Producer Record<byte[], byte[]> producerRecord = convert ToProducer Record(record);
of f set sMap. conmput e(new Topi cPartition(record.topic(), record. kafkaPartition()),
(tp, curOfsetMetadata) ->
(curOfset Metadata == null || record. kaf kaOf fset () > curOf fset Metadata. offset())
2
new O f set AndMet adat a(record. kaf kaOf f set ())
cur O f set Met adat a) ;
Fut ur e<Recor dMet adat a> future = producer. send(producer Record, (recordMetadata, e) -> {
if (el=null) {
log.error("{} failed to send record to {}: ", MrrorSinkTask.this, producerRecord.
topic(), e);
| og. debug("{} Failed record: {}", MrrorSinkTask.this, producerRecord);
t hrow new Kaf kaException(e);
} else {
log.info("{} Wote record successfully: topic {} partition {} offset {}", //log.trace
M rror Si nkTask. thi s,
recordMet adat a. t opi c(), recordMetadata. partition(),
recordMet adat a. of fset ());
commi t Record(record, recordMetadata);
}
IOF
futures.add(future);
records. poll();

}

} catch (Kaf kaException e) {
/1 Any unsent nessages are added to the remaining remai ni ngRecordsMap for re-send
for (SinkRecord record = records.poll(); record != null; record = records.poll()) {
addConsuner Recor dToTopi cPartiti onRecordsMap(record, renaini ngRecordsMap);
} finally { //TODO nay add nore exception handling case
for (Future<RecordMetadata> future : futures) {
try {
future.get();
} catch (Exception e) {
Si nkRecord record = futureMap. get(future);
/1 Any record failed to send, add to the remai ni ngRecordsMap
addConsuner Recor dToTopi cPartiti onRecordsMap(record, renaini ngRecordsMap);

}

if (isTransactional && remai ni ngRecordsMap. size() == 0) {
producer. sendCf f set sToTransact i on(of f set sMap, consuner G oupl d);
conmi t Transacti on(producer);

}

if (remaini ngRecordsMap. size() > 0) {
/1 For transaction case, all records should be put into remnainingRecords, as the whol e transaction
shoul d be redone
Col | ecti on<Si nkRecor d> recordsToReSend,;
if (isTransactional) {
/1 transactional: retry all records, as the transaction will cancel all successful and failed

records.
recordsToReSend = records;
} else {
/1 non-transactional: only retry failed records, others were finished and sent.
recordsToReSend = remai ni ngRecor dsMap;
}
t hrow new ResendRecor dsExcepti on(recordsToReSend);
}
}

/1 This commitRecord() follows the sane |ogics as conmtRecord() in MrrorSourceTask, to
public void conmt Record(Si nkRecord record, RecordMetadata netadata) {
try {
if (stopping) {
return;

}

if (!nmetadata. hasOffset()) {
| og. error("RecordMetadata has no offset -- can't sync offsets for {}.", record.topic());
return;
}
Topi cPartition topicPartition = new TopicPartition(record.topic(), record. kafkaPartition());
long latency = SystemcurrentTineMIlis() - record.tinestanp();
metrics. count Record(topicPartition);
metrics.replicationLatency(topicPartition, |atency);
Topi cPartition sourceTopicPartition = MrrorUtils.unwapPartition(record.sourcePartition());
long upstreanOfset = MrrorWils.unwapOfset(record. sourceOfset());
| ong downstreanOf fset = netadata.offset();
maybeSyncOf f set s(sourceTopi cPartition, upstreanOffset, downstreanfset);
} catch (Throwable e) {
log.warn("Failure commtting record.", e);
}
}

private void begi nTransacti on(Kaf kaProducer<byte[], byte[]> producer) {
if (isTransactional) {
producer . begi nTransaction();
transacti onl nProgress = true;

}

private void initTransactions(Kaf kaProducer<byte[], byte[]> producer) {
if (isTransactional) {
producer.initTransactions();
}
}

private void conm tTransacti on(Kaf kaProducer<byte[], byte[]> producer) {
if (isTransactional) {
producer. conmit Transaction();
transacti onl nProgress = fal se;

}

private void abortTransacti on(Kaf kaProducer<byte[], byte[]> producer) {
if (isTransactional && transactionlnProgress) {
producer. abort Transaction();
transactionl nProgress = fal se;

}

public static class ResendRecordsExcepti on extends Exception {
private Collection<Si nkRecord> remai ni ngRecords;

publ i c ResendRecor dsExcepti on(Col | ecti on<Si nkRecor d> renai ni ngRecords) {
super (cause);
t hi s. remai ni ngRecords = renai ni ngRecords;

}

public Collection<Si nkRecord> get Renai ni ngRecords() {
return remai ni ngRecords;

}

MirrorSinkConnector
As SinkTask can only be created by SinkConnector, MirrorSinkConnector will be implemented and follow the most same logics as current MirrorSourceCon

nector. To minimize the duplicate code, a new class, e.g. "MirrorCommonConnector”, may be proposed to host the common code as a separate code
change merged before this KIP.

Migration from MirrorSourceConnector to MirrorSinkConnector /w EOS

This is a simply high-level guidance without real-world practices and is subject to change. Also each migration case may be handled differently with
different requirements.

https://github.com/apache/kafka/blob/trunk/connect/mirror/src/main/java/org/apache/kafka/connect/mirror/MirrorSourceConnector.java
https://github.com/apache/kafka/blob/trunk/connect/mirror/src/main/java/org/apache/kafka/connect/mirror/MirrorSourceConnector.java

By default, "connector.type" is set to "source", when the latest MirrorMaker2 is deployed, the current mirroring behavior should not be changed.

Next, if there are multiple instances of MirrorMaker2, consider to change "connector.type" to "sink" on one instance and deploy it. Once the config change
looks stable, repeat for other instances. The message delivery semantics is still at-least-once, but all instances of MirrorMaker2 are now using
MirrorSinkConnector.

Since "Transactional mode" or EOS will inevitably consume more resources and deliver lower throughput, it is always recommended to benchmark the
impact and provision the enough capacity before switching to EOS.

If a short downtime is allowed, stopping all MirrorMaker2 instances, setting "transaction.producer” to "true", then starting them again. From now,
MirrorMaker2 should mirror the data with EOS.

if expect "no downtime", the migration should be conducted more carefully and the operational experiences could refer to "how to migrate from non-
transactional to transactional Kafka producer", which is out of scope of this KIP.

Deprecation

A config "connector.type" is proposed to choose which type of Connector (source or sink) to use in MirrorMaker2. So both MirrorSourceConnector and
MirrorSinkConnector will co-exist in the codebase in the near future.

In the long term, if MirrorSinkConnector covers all use cases of MirrorSourceConnector and the migration is proven seamless, then in the future release,
deprecation of MirrorSource Connector could be considered.

Rejected Alternatives

https://github.com/apache/kafka/pull/5553, KAHKA-6688 - Transactional EoS for source connectors | RESOLVED | and

KAFKA-3821 - Allow Kafka Connect source tasks to produce offset without writing to topics | OPEN | are relevant efforts in a bigger scope, but it

seems none of them proceeded successfully for a quite amount of time.

https://github.com/apache/kafka/pull/5553
https://issues.apache.org/jira/browse/KAFKA-6080
https://issues.apache.org/jira/browse/KAFKA-3821

	KIP-656: MirrorMaker2 Exactly-once Semantics

