
KIP-673: Emit JSONs with new auto-generated schema

Status
Motivation
Public Interfaces

Proposed trace fields
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Approved

Discussion thread: here

JIRA: KAFKA-10525

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Kafka’s request and response traces currently output in a format that is JSON-like and are not easily parsable. These are currently emitted by
RequestChannel when logging is turned on at DEBUG level. Structured logs will be easier to load and parse with other tools like jq, elasticsearch, druid or
presto.

There is a new auto-generated schema for each request type that supports outputting JSON payloads for request and response payloads. These can be
adapted to provide structured request tracing.

Public Interfaces
The new auto-generated schemas generate a converter class for each request/response type such as when FetchRequestDataJsonConverter .

 is run. The signature looks as follows:/gradlew processMessages

Method Signature of the auto-generated XYZDataJsonConverter

public class XYZDataJsonConverter {

 /* Converts the request/response data into a JsonNode*/
 public static JsonNode write(XYZData data, short version);

A new Scala singleton will be added to handle the data conversion to a JsonNode

https://lists.apache.org/thread.html/r99a44cbc65c971cabb54ae585e9b314e5260ab7de0843b3d12a43caf%40%3Cdev.kafka.apache.org%3E
https://issues.apache.org/jira/browse/KAFKA-10525

Method Signature of RequestConvertToJson

object RequestConvertToJson {

 /**
 * The data converter for request types which calls the appropriate
 * XYZRequestDataJsonConverter.write()
 * @return JsonNode
 */
 def request(request: AbstractRequest, verbose: Boolean): JsonNode

 /**
 * The data converter for response types which calls the appropriate
 * XYZResponseDataJsonConverter.write()
 * @return JsonNode
 */
 def response(response: AbstractResponse, version: Short): JsonNode
}

With these helper functions, logs will become easily parsable.

For example, a request log currently looks like this:

Completed request: RequestHeader(apiKey=LIST_OFFSETS, apiVersion=5, clientId=consumer-group-1,
correlationId=8799) -- {replicaId=-1,isolationLevel=0,topics=[{name=test_topic,partitions=[{partitionIndex=0,
timestamp=1599676632886,currentLeaderEpoch=0}]}]},response={throttleTimeMs=0,topics=[{name=test_topic,partitions=
[{partitionIndex=0,errorCode=0,timestamp=1599676632886,offset=8700,leaderEpoch=0}]}]} from connection 127.0.0.1:
62610-127.0.0.1:62622-3;totalTime:0.085,requestQueueTime:0.013,localTime:0.033,remoteTime:0.011,throttleTime:0,
responseQueueTime:0.011,sendTime:0.015,sendIoTime:0.01,securityProtocol:PLAINTEXT,principal:User:ANONYMOUS,
listener:PLAINTEXT,clientInformation:ClientInformation(softwareName=apache-kafka-java, softwareVersion=unknown)

But after switching to use the auto-generated schemas, request logs will look like this:

Completed request: {"requestHeader": {"apiKey": "LIST_OFFSETS", "apiVersion": 5, "clientId": "consumer-group-1",
"correlationId": 8799}, "request": {"replicaId":-1,"isolationLevel":0,"topics":[{"name":"test_topic","partitions":
[{"partitionIndex":0,"timestamp":1599676632886,"currentLeaderEpoch":0}]}]},"response":{"throttleTimeMs":0,"
topics":[{"name":"test_topic","partitions":[{"partitionIndex":0,"errorCode":0,"timestamp":1599676632886,"offset":
8700,"leaderEpoch":0}]}]}, "connection": "127.0.0.1:62610-127.0.0.1:62622-3", "totalTime": 0.085,
"requestQueueTime": 0.013, "localTime": 0.033, "remoteTime":0.011, "throttleTime":0,"responseQueueTime":0.011,"
sendTime":0.015,"sendIoTime":0.01,"securityProtocol":"PLAINTEXT","principal":"User:ANONYMOUS","listener":"
PLAINTEXT","clientInformation":"ClientInformation(softwareName=apache-kafka-java, softwareVersion=unknown)"}

The addition of a parameter was added to the auto-generated schemas so that ProduceRequest and FetchResponse logs can either serializeRecords
output the record's bytes or the record's size in bytes.

Proposed trace fields

Current Trace Field New Key

RequestHeader "requestHeader"

-- "request"

response "response"

from connection "connection"

totalTime "totalTime"

requestQueueTime "requestQueueTime"

localTime "localTime"

remoteTime "remoteTime"

throttleTime "throttleTime"

responseQueueTime "responseQueueTime"

sendTime "sendTime"

sendIoTime "sendIoTime"

securityProtocol "securityProtocol"

principal "principal"

listener "listener"

clientInformation "clientInformation"

Proposed Changes
Make each request type’s accessible. Construct a helper class to handle converting the request data to a parsable JSON data RequestConvertToJson
format.

In order to a log request, the appropriate helper function in is called on the request. From there, the respective RequestConvertToJson XYZDataJsonC
 is called and returns the JsonNode of the data which when converted to a string is in a parsable JSON format.onverter

Compatibility, Deprecation, and Migration Plan
This simply changes the format of request and response logs.

Rejected Alternatives
Adding toJson() to each of the request types that calls data.toJson()

This would require importing the `XYZRequestDataJsonConverter` class which has a Jackson dependency, but we want to avoid putting the
Jackson dependency on the clients.

	KIP-673: Emit JSONs with new auto-generated schema

