
Crypto (Digital Signatures)

Crypto component for Digital Signatures

Available as of Camel 2.3

With Camel cryptographic endpoints and Java's Cryptographic extension it is easy to create Digital Signatures for s. Camel provides a pair of Exchange
flexible endpoints which get used in concert to create a signature for an exchange in one part of the exchange's workflow and then verify the signature in a 
later part of the workflow.

Maven users will need to add the following dependency to their  for this component:pom.xml

xml<dependency> <groupId>org.apache.camel</groupId> <artifactId>camel-crypto</artifactId> <version>x.x.x</version> <!-- use the same version as 
your Camel core version --> </dependency>

Introduction

Digital signatures make use of Asymmetric Cryptographic techniques to sign messages. From a (very) high level, the algorithms use pairs of 
complimentary keys with the special property that data encrypted with one key can only be decrypted with the other. One, the private key, is closely 
guarded and used to 'sign' the message while the other, public key, is shared around to anyone interested in verifying the signed messages. Messages are 
signed by using the private key to encrypting a digest of the message. This encrypted digest is transmitted along with the message. On the other side the 
verifier recalculates the message digest and uses the public key to decrypt the the digest in the signature. If both digests match the verifier knows only the 
holder of the private key could have created the signature.

Camel uses the Signature service from the Java Cryptographic Extension to do all the heavy cryptographic lifting required to create exchange signatures. 
The following are some excellent resources for explaining the mechanics of Cryptography, Message digests and Digital Signatures and how to leverage 
them with the JCE.

Bruce Schneier's Applied Cryptography
Beginning Cryptography with Java by David Hook
The ever insightful Wikipedia Digital_signatures

URI format

As mentioned Camel provides a pair of crypto endpoints to create and verify signatures

crypto:sign:name[?options] crypto:verify:name[?options]

crypto:sign creates the signature and stores it in the Header keyed by the constant org.apache.camel.component.crypto.
, i.e. .DigitalSignatureConstants.SIGNATURE "CamelDigitalSignature"

crypto:verify will read in the contents of this header and do the verification calculation.

In order to correctly function, the sign and verify process needs a pair of keys to be shared, signing requiring a  and verifying a  PrivateKey PublicKey
(or a  containing one). Using the JCE it is very simple to generate these key pairs but it is usually most secure to use a KeyStore to house Certificate
and share your keys. The DSL is very flexible about how keys are supplied and provides a number of mechanisms.

Note a  endpoint is typically defined in one route and the complimentary  in another, though for simplicity in the examples crypto:sign crypto:verify
they appear one after the other. It goes without saying that both signing and verifying should be configured identically.

Options
confluenceTableSmall

Name Type Default Description

algorithm String SHA1WithDSA The name of the JCE Signature algorithm that will be used.

alias String null An alias name that will be used to select a key from the keystore.

bufferSize Integer 2048 the size of the buffer used in the signature process.

certificate Certificate null A Certificate used to verify the signature of the exchange's payload. Either this or a Public Key is 
required.

keystore KeyStore null A reference to a JCE Keystore that stores keys and certificates used to sign and verify.

keyStoreParameters Camel 
2.14.1

KeyStoreParamete
rs

null A reference to a Camel KeyStoreParameters Object which wraps a Java KeyStore Object

provider String null The name of the JCE Security Provider that should be used.

privateKey PrivateKey null The private key used to sign the exchange's payload.

publicKey PublicKey null The public key used to verify the signature of the exchange's payload.

secureRandom secureRandom null A reference to a  object that will be used to initialize the Signature service.SecureRandom

password char[] null The password to access the private key from the keystore

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
http://en.wikipedia.org/wiki/Digital_signature


clearHeaders String true Remove camel crypto headers from Message after a verify operation (value can be /"true" "fal
).se"

Using

1) Raw keys

The most basic way to way to sign and verify an exchange is with a KeyPair as follows.{snippet:id=basic|lang=java|url=camel/trunk/components/camel-
The same can be achieved with the  using references crypto/src/test/java/org/apache/camel/component/crypto/SignatureTests.java} Spring XML Extensions

to keys{snippet:id=basic|lang=xml|url=camel/trunk/components/camel-crypto/src/test/resources/org/apache/camel/component/crypto/SpringSignatureTests.
xml}

2) KeyStores and Aliases.

The JCE provides a very versatile keystore concept for housing pairs of private keys and certificates, keeping them encrypted and password protected. 
They can be retrieved by applying an alias to the retrieval APIs. There are a number of ways to get keys and Certificates into a keystore, most often this is 
done with the external 'keytool' application.  is a good example of using keytool to create a KeyStore with a self signed Cert and Private key.This

The examples use a Keystore with a key and cert aliased by 'bob'. The password for the keystore and the key is 'letmein'

The following shows how to use a Keystore via the Fluent builders, it also shows how to load and initialize the keystore.{snippet:
Again in Spring a id=keystore|lang=java|url=camel/trunk/components/camel-crypto/src/test/java/org/apache/camel/component/crypto/SignatureTests.java}

ref is used to lookup an actual keystore instance.{snippet:id=keystore|lang=xml|url=camel/trunk/components/camel-crypto/src/test/resources/org/apache
/camel/component/crypto/SpringSignatureTests.xml}

3) Changing JCE Provider and Algorithm

Changing the Signature algorithm or the Security provider is a simple matter of specifying their names. You will need to also use Keys that are compatible 
with the algorithm you choose.{snippet:id=algorithm|lang=java|url=camel/trunk/components/camel-crypto/src/test/java/org/apache/camel/component/crypto
/SignatureTests.java}{snippet:id=provider|lang=java|url=camel/trunk/components/camel-crypto/src/test/java/org/apache/camel/component/crypto

or/SignatureTests.java} {snippet:id=algorithm|lang=xml|url=camel/trunk/components/camel-crypto/src/test/resources/org/apache/camel/component/crypto
/SpringSignatureTests.xml}{snippet:id=provider|lang=xml|url=camel/trunk/components/camel-crypto/src/test/resources/org/apache/camel/component/crypto
/SpringSignatureTests.xml}

4) Changing the Signature Message Header

It may be desirable to change the message header used to store the signature. A different header name can be specified in the route definition as follows{s
ornippet:id=signature-header|lang=java|url=camel/trunk/components/camel-crypto/src/test/java/org/apache/camel/component/crypto/SignatureTests.java} {s

nippet:id=signature-header|lang=xml|url=camel/trunk/components/camel-crypto/src/test/resources/org/apache/camel/component/crypto
/SpringSignatureTests.xml}

5) Changing the buffersize

In case you need to update the size of the buffer...{snippet:id=buffersize|lang=java|url=camel/trunk/components/camel-crypto/src/test/java/org/apache
or/camel/component/crypto/SignatureTests.java} {snippet:id=buffersize|lang=xml|url=camel/trunk/components/camel-crypto/src/test/resources/org/apache

/camel/component/crypto/SpringSignatureTests.xml}

6) Supplying Keys dynamically.

When using a Recipient list or similar EIP the recipient of an exchange can vary dynamically. Using the same key across all recipients may be neither 
feasible nor desirable. It would be useful to be able to specify signature keys dynamically on a per-exchange basis. The exchange could then be 
dynamically enriched with the key of its target recipient prior to signing. To facilitate this the signature mechanisms allow for keys to be supplied 
dynamically via the message headers below

Exchange.SIGNATURE_PRIVATE_KEY, "CamelSignaturePrivateKey"
Exchange.SIGNATURE_PUBLIC_KEY_OR_CERT, "CamelSignaturePublicKeyOrCert"

{snippet:id=headerkey|lang=java|url=camel/trunk/components/camel-crypto/src/test/java/org/apache/camel/component/crypto/SignatureTests.java}or{snipp
Eveet:id=headerkey|lang=xml|url=camel/trunk/components/camel-crypto/src/test/resources/org/apache/camel/component/crypto/SpringSignatureTests.xml}

n better would be to dynamically supply a keystore alias. Again the alias can be supplied in a message header

Exchange.KEYSTORE_ALIAS, "CamelSignatureKeyStoreAlias"

{snippet:id=alias|lang=java|url=camel/trunk/components/camel-crypto/src/test/java/org/apache/camel/component/crypto/SignatureTests.java}or{snippet:
The header id=alias|lang=xml|url=camel/trunk/components/camel-crypto/src/test/resources/org/apache/camel/component/crypto/SpringSignatureTests.xml}

would be set as follows

Exchange unsigned = getMandatoryEndpoint("direct:alias-sign").createExchange(); unsigned.getIn().setBody(payload); unsigned.getIn().setHeader
(DigitalSignatureConstants.KEYSTORE_ALIAS, "bob"); unsigned.getIn().setHeader(DigitalSignatureConstants.KEYSTORE_PASSWORD, "letmein".
toCharArray()); template.send("direct:alias-sign", unsigned); Exchange signed = getMandatoryEndpoint("direct:alias-sign").createExchange(); signed.
getIn().copyFrom(unsigned.getOut()); signed.getIn().setHeader(KEYSTORE_ALIAS, "bob"); template.send("direct:alias-verify", signed);

Endpoint See Also

Crypto Crypto is also available as a Data Format

https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://www.exampledepot.com/egs/java.security.cert/CreateCert.html
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint+See+Also
https://cwiki.apache.org/confluence/display/CAMEL/Crypto
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format

	Crypto (Digital Signatures)

