
FLIP-166: Pinot Connector
Status

Discussion thread

Vote thread

JIRA

Release

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Background and Motivation

A brief introduction to Apache Pinot and the ecosystem

Apache Pinot is a real-time distributed OLAP datastore, built to deliver scalable real time analytics with low latency. As Figure 1 shows, Pinot has an inbuilt
lambda architecture as the following components:

Figure 1. A typical Pinot ecosystem architecture

Services/Applications produce the source events to the message queue (e.g. Kafka). The message queue typically buffers the messages for
some retention period (e.g. a few days).
The messages are ingested into the Data Lake (e.g. Hadoop) for historical data persistence.
A streaming pipeline (e.g. Flink) transforms and processes the messages into another Kafka topic, which is used for ingestion by Pinot into a real-
time table.
A batch pipeline (e.g. Spark) does a similar transformation on the corresponding Hive dataset, creates Pinot segments, and pushes them to Pinot
offline table.
Both the real-time table and offline table are used for serving user queries, and Pinot creates a federated view from the real-time and offline
results.

The problem

https://docs.pinot.apache.org/

1.

2.
3.
4.
5.

A common problem for this architecture is the duplication of the transformation logic in the streaming and batch ingestion pipelines. Because the batch
data source (e.g. Hive datasets) are ingested from the Kafka topic, they typically share the same schema. Similarly, the real-time table and offline table in
Pinot are different parts of the same table, and therefore share the same schema. That means users need to describe the same logic twice in Flink and
Spark ETL jobs, making the jobs hard to maintain and sync. Ideally, we want to consolidate the streaming/batch ingestion logic, and use Flink for both
pipelines.

Proposal
We propose a Flink Sink to Pinot on top of the TableSink interfaces (FLIP-95) for storing batch processing results in Pinot and also integrate the sink with
the Unified Sink API (FLIP-143). The streaming sink is less useful to Pinot, because Pinot does not provide a record write API. Instead, Pinot ingests from
the streams and buffers on the server, so that it can directly serve the latest events.

Design
The record writes in the Flink work in the following way, as shown in Figure 2:

Figure 2. Pinot Sink workflow

PinotSink contains a SegmentWriter, which can receive the records to write. The Sink converts the Flink data type to Pinot data type to feed the
writer.
The SegmentWriter has an internal buffer with a configured threshold for flushing
Upon flushing, SegmentWriter creates a segment file including the metadata files and index files.
The SegmentWriter then packages the files into a tar
The SegmentWriter uploads the segment tar to the Pinot controller

In order to support the at-least-once semantics, the segments encode the identifier in the segment name and therefore can be replaced if the job reruns.
Also, because we aim to support the batch mode only in this proposal, we don’t plan to support the intermediate checkpoints.

Note that there is an ongoing effort on the SegmentWriter in the Pinot community, which implements step #2 - #5. To avoid duplicated efforts and simplify
the connector implementation, the Pinot connector in this proposal will depend on the SegmentWriter, which is expected to release in 0.8.0. In particular,
the SegmentWriter has the following methods:

interface SegmentWriter {
 init(Configuration configs);
 write(PinotRow row);
 write(PinotRow[] rows);
 flush();
 close();
}

And the Pinot sink will be implemented like the following:

https://cwiki.apache.org/confluence/display/FLINK/FLIP-95%3A+New+TableSource+and+TableSink+interfaces
https://cwiki.apache.org/confluence/display/FLINK/FLIP-143%3A+Unified+Sink+API
https://docs.google.com/document/d/1f_JlegCkH_Zysm80maLnv7iqgWtD9uPiBLkeLmMUoNg/edit?ts=6036ced5

public class PinotSinkFunction<T> extends RichSinkFunction<T> {
 public void open(Configuration parameters) throws Exception {
 SegmentWriter writer = new ...
 }

 public void invoke(T value, Context context) throws Exception {
 GenericRow row = pinotRowConverter.concert(value);
 writer.write(row) ;
 if(checkThreshod()) {
 writer.flush();
 }
 }

 public void close() throws Exception {
 writer.flush();
 writer.close();
 }
}

Connector Options

Option Requi
red

Defa
ult

Ty
pe

Description

connector Y none stri
ng

The connector to use, here shall be ‘pinot’

table-name Y none stri
ng

name of the pinot table

url Y none stri
ng

URL of the Pinot controller

sink.buffer-flush.
max-size

N 5mb stri
ng

maximum size in memory of buffered rows for creating a segment.

sink.buffer-flush.
max-rows

N 1000 int maximum number of rows to buffer for each segment creation

sink.parallelism N none int Defines the parallelism of the Pinot sink operator. By default, the parallelism is determined by the framework using the same
parallelism of the upstream chained operator.

segment-name.
type

N simp
le

stri
ng

the type of name generator to use. Following values are supported -

simple - this is the default spec.
normalizedDate - use this type when the time column in your data is in the String format instead of epoch time.
fixed - configure the segment name by the user.

segment-name.
name

N none stri
ng

For fixed SegmentNameGenerator. Explicitly set the segment name.

.segment.name
postfix

N none stri
ng

For simple SegmentNameGenerator.

Postfix will be appended to all the segment names.

.segment.name
prefix

N none stri
ng

For normalizedDate SegmentNameGenerator.

The Prefix will be prepended to all the segment names.

Schema and Data Type Mapping

The Sink connector can fetch the schema as well as table configurations via the Pinot controller API. The schema and table configs are used for index
creation.

The data type needs to be converted during the write operation.

http://segment-name.name
http://segment-name.name
http://segment.name
http://segment.name

Note by default, Pinot transforms null values coming from the data source to a default value determined by the type of the corresponding column (or as
specified in the schema), per the Pinot guide.

Flink SQL type Pinot type Default value for null

TINYINT Integer 0

SMALLINT Integer 0

INT Integer 0

BIGINT Long 0

DECIMAL Not supported Not supported

FLOAT Float 0.0

BOOLEAN Integer 0

DATE Stores the number of days since epoch as an Integer value 0

TIME Stores the milliseconds since epoch as Long value. 0

Timestamp Stores the milliseconds since epoch as Long value. 0

STRING String “null”

BYTES Bytes byte[0]

ARRAY Array default value of array type

Rejected Alternatives
An alternative to the Pinot sink could be to use Hive as a data source and Kafka batch as a sink, and then have Pinot ingests from the Kafka topic.
However, this does not work for the following reasons:

The segments are managed differently in Pinot’s realtime table and offline table. The realtime segments are grouped using Kafka offsets,
whereas the offline segments are split based on the time range. As a result, The realtime segments cannot be replaced if the job reruns.
Also, it’s less efficient to use Kafka the intermediate storage for the batch processing, comparing to the direct segment creation and uploads.

Document

 https://docs.google.com/document/d/1GVoFHOHSDPs1MEDKEmKguKwWMqM1lwQKj2e64RAKDf8/edit#heading=h.uvocz0dwkepo

https://docs.pinot.apache.org/developers/advanced/null-value-support#need-for-special-null-value-handling
https://docs.google.com/document/d/1GVoFHOHSDPs1MEDKEmKguKwWMqM1lwQKj2e64RAKDf8/edit#heading=h.uvocz0dwkepo

	FLIP-166: Pinot Connector

