
Micronaut 'dev mode' Run Support
DRAFT
Micronaut applications can be run in (Continuous Run) mode. In this mode, a change to a project source will triggerautomatic restart

compilation
packaging
application restart

This run mode is for debugging, as the developer routinely modifies the underlying source, and (seemingly random) restarts would break the not suitable
debugging context. There still needs to be a "traditional" run mode for work scenarios, where (random) restarts implied by source changes could be
harmful, e.g. when the worked-on app maintains some connections to other services, or keeps some context.

The actual implementation should be to the underlying build/launch system.always delegated

gradle supports with parameter to the gradle launcher (read about the mode)continous build mode -t more
maven is extended by plugin and goal to do the samemicronaut mn:run

Run in Dev mode, Debug normally

There is a UI-less way to enable support for when executing action and leaving behavior of untouched. If we provide mn:run Run (Single) Debug (Single)
good enough extension API, then the Micronaut support module may remap the from to for all file that contain Run exec:exec mn:run pom.xml microna

 . Both Maven and Gradle project support action configuration mapping, so implementation in both Gradle and Maven will just provide ut-maven-plugin
a different for the existing project action. Gradle supports the flag from version 4.0.x (7 / 2017), so it seems pretty safe to action mapping --continuous
add that action to the project menu.unconditionally

Should there be a necessity to support multiple types of Run or Debug, then read on...

Using project Configurations

The "Continuous run" is essentially a flavour, or variant of "Run" actions. With Gradle, "dev mode" can be applied to . RunSinglerun and test

With Micronaut Maven plugin, however, only actions are supported. NetBeans plugin support Run Maven Configurations

can redefine any project action
can enable a profile

The downside is that project action definitions are completely independent: a change in main class, VM parameters or parameters must be copied over to
all configuration(s) manually where the action is redefined: but that's not indicated at all to the user. . While Gradle does not support configurations at all
Gradle plugin supports , similar to our Maven module, it does not contain the 2nd axis (configurations, profiles). If added, would be unique action mapping
to the IDE (but profile-based action mapping in Maven is as well), without connection to the gradle build.

Continuous run acts as like a modifier on (certain) actions; it's a question how we handle a situation when there are that could be more such modifiers
combined, i.e.

continuous run
logging
database connections

as each single is (now) represented by a Configuration - which do not combine or merge.

Separate Project Action(s)

A new project action can be defined to handle this special action. Both Maven and Gradle project support action configuration mapping, Continuous Run
so implementation in both Gradle and Maven will just provide an for the new project action. The project action itself should be defined inaction mapping

Gradle Projects module: as is a Gradle feature, this will enable its use in other Gradle projects, not just Micronaut.-t
Micronaut module (for Maven): Maven does not support it itself, but Micronaut's plugin does. Possibly, to reduce dependencies, micronaut.

 bridge module could be created.maven

This Project Action can be then invoked programmatically, apart from the project UI itself, by a LSP client, too.

 Since the action can be seen as a for traditional Run (depending on project characteristics and user's preferred workflow), it should be replacement
configurable as the , responding fordefault Run action

ActionProvider.COMMAND_RUN,
ActionProvider.COMMAND_RUN_SINGLE.

 Need to define an (abstract) "Run" action can be remapped to a different action ("run-continuous") defined in . how nbactions.xml

Definition for Maven

https://blog.gradle.org/introducing-continuous-build
https://github.com/apache/netbeans/compare/master...JaroslavTulach:jtulach/DefaultActionsForMicronautPom

 <action>
 <actionName>run.continuous</actionName>
 <packagings>
 <packaging>jar</packaging>
 </packagings>
<!--
 Maybe not necessary to add, if the MavenActionsProvider itself are registered specifically per-
plugin

 <activation>
 <plugin>io.micronaut.build:micronaut-maven-plugin</plugin>
 </activation>
-->
 <goals>
 <goal>process-classes</goal>
 <goal>io.micronaut.build:micronaut-maven-plugin:2.0.0:run</goal>
 </goals>
 <properties>
 <mn.jvmArgs>${exec.vmArgs} -classpath %classpath</mn.jvmArgs>
 <mn.appArgs>${exec.appArgs</mn.appArgs>
 <exec.mainClass>${packageClassName}</exec.mainClass>
 <exec.executable>java</exec.executable>
 </properties>
 </action>

Display Action in the IDE

Neither Gradle or Maven support adding actions in the project UI. Even if the action is defined in , it will not appear technology-specific nbactions.xml
anywhere in the popup menu, except for (having CUSTOM- prefix in their action name; maven only). In this case, I would like to display custom actions
the action alongside the and .Continuous Run Run Debug

Gradle supports the flag from version 4.0.x (7 / 2017), so it seems pretty safe to add that action to the project --continuous unconditionally
menu. There are some , the action warn the user for the 1st time the action is used, if it encounters such an documentedlimitations could
environment.
The action should not be present for projects (those which contain MN plugin) in Maven. other than micronaut

 Need to define a representation of such configuration in the UI. An alternative would be a menu item that

executes on click,
can display a submenu which contains

Run once
Run continuous

the new state would be remembered

Adding technology-specific actions

Common actions for a project type are placed in . These actions are displayed in the Project's context menu in the Projects/<project-type-id>/Actions
filesystem-defined order. I propose to define a that would include also actions from for all layer API Projects/<project-type-id>/plugin-id/Actions plugins
participating on the project:

plugins referenced in the ,build.gradle
plugins by of the maven project configured active profiles

 Allowing to extend the main project menu may lead to its explosion with many added actions for each technology. A standard should grouping action
be created in the OpenAPI and documented, so a technology may eventually add its action into a subgroup. This of the initial will not be part
implementation, but could be added later. Note that by default, the collects the whole .../Actions subtree (traversing into subfolders).Lookups.forPath()

Integration with VSCode

Launching run configurations

The launch type should be enhanced with eitherjava8+

continuousExecution : boolean | null, or
configuration : string | null, that would select the desired configuration known by LSP server
action: | , to select the (abstract) action string null
configurationParams: generic Map to support possible future launch extensions

https://docs.gradle.org/current/userguide/command_line_interface.html#sec:continuous_build_limitations_jdk9

The user may edit / change the Run configuration or create an additional one that executes the application in the "Continuous run" mode. Blank action
would enable the same logic, as it is done now. Unhandled actions would get the of the active file in its actionLookup - that would eventually FileObject
enable us to allow more flexibility through DAP protocol.

Access to run configurations

Run configurations extracted from the project would be served over LSP to that should report them from DebugConfigurationProvider provideDebugCo
. nfigurations

Project Actions - implementation

Action contributions

Action has to be contributed to the project based on , This is supported with Gradle (but gradle has the action centralized in the core), but must be plugin
added to Maven.

RunJar support

Current "Run" operation relies on prerequisity checker and late-bound checker to step in, and supply necessary values for ${} variables referenced RunJar
in the action config. The prerequisity checker checks for when activating. If Micronaut support defines as a different specific action IDs Continuous Run
action ID, these checkers be used, and the action may become broken: for example application args, VM args etc as seen in the Project will not
Properties dialog will not be processed, will not be collected etc. Two (or more ?) options here:StartupExtenders

Micronaut plugin will the RunJar logic, orduplicate
We export an API from Maven core "Run" support to that support to specific executions, so the logic could be reusedbind

packaging (already done)
project action ID
active plugins

We export an API from either Maven (but see Gradle notes below) or from Project support itself, to actions. Something like categorize boolean
, with an appropriate (declarative ?) SPI that Micronaut can use to declare is kind of isKindOf(abstractActionId, actionId) Continous Run

Run. This way, support may check for instead of action Ids.runJar categories

The logic implemented by Maven (which can be reused by Micronaut) is:

Selection of the main class: if not defined, UI shows up, eventually recording user's choices in nbactions.xml
Java platform selection
StartupExtender VM parameters merge
ExplicitProcessParameters processing

Micronaut Maven Plugin

While goal honours system property , that eventually specifies the desired executable to be used for application launch, exec:exec exec.executable Java
Micronaut maven plugin and relies on in maven. NetBeans toolchains much, and our does not honour any such property toolchains do not support
LSP clients also manage JDKs in a different way, not using maven toolchains. for mn:run goal, unless the Java platform selection will be broken whole

 runs on the target JDK.maven

The Micronaut plugin the following properties we need to transfer parameters from the IDE, or LSP client:does not honour

mn.jvmArgs - just plugin configuration property is supported, not property on commandlinesystem
mn.appArg - just plugin configuration property is supported, not property on commandlinesystem
exec.executable - not supported , even as configuration propertyuat all
exec.args - whole composed command line

The simplest solution is to goal to support some 'exec.executable'-like (i.e.) property with a similar semantics.enhance the mn:run mn.executable

Gradle implementation

The current parameter-passing implementation could work, , except that it also specifically checks for action IDs. Since Gradle supports mostly Continuou
 natively, the JavaExecTokenProvider could also check for the new action ID. But if (as outlined for Maven) is invented, it s run action categorization

would benefit from that - more actions (even user custom ones) could be categorized as "run-like". Other than that, gradle support should work acceptably.

Currently gradle support in NetBeans - the user cannot specify application arguments, JVM arguments, env variables or main lacks run configuration UI
class.

Configurations - implementation

Maven

Configurations are already there. We need to make instances plugin-aware, similar to the scenario. With ProjectConfigurationsProvider ActionProvider
 a " " configuration would be magically pre-defined with suitable defaults. Users can override. The idea is:micronaut-maven-plugin Development mode

make a configuration form defined in effective POMeach profile

Gradle

Gradle itself does not support profiles, or any configurations. Maven profiles can be transposed into gradle using of buildscript conditional inclusion
fragments.

	Micronaut 'dev mode' Run Support

