Proposal: Runtime Properties

Describes the feature as-is-built 2021-09-09

Motivation

The Daffodil Java and Scala API's require the use of user allocated classes that are passed into the Daffodil parse/unparse functions. Examples of such
objects include implementations of the | nput Sour ceDat al nput Stream, | nf oset | nputter ,and | nf oset Qut put t er interfaces. These interfaces
are designed so that users can implement custom inputs and outputs that require no knowledge from Daffodil aside from the interface functions. For
example, a user could implement a custom | nf oset | nputt er and | nf oset Qut putt er to support EXI or YAML infoset representations, which
Daffodil does not natively support, without Daffodil needing to know the implementation details.

It may sometimes be desirable for these custom implementations to have configurable behavior based on annotations applied to the DFDL schema. Some
use cases include:

* Define "dirty words" on the schema for particular elements which should be redacted/removed when output from, or input to, an infoset
® Define a basic transformation to be applied on some infoset elements, e.g. uppercase/lowercase
* Define a complex transformation, such as converting a simple element string to actual XML nodes (i.e. non-escaped XML)

In each of these cases, it is not Daffodil that performs such redactions/transformations, but the | nf oset | nput t er and/or | nf oset Qut putter . But
such classes are not necessarily schema aware, so likely have no information about which elements must be transformed or how to perform those
transformations.

The following proposal suggests a way to add generic annotations to a DFDL schema which are then passed into the | nf oset | nputter and | nf oset O
ut put t er , allowing custom input/output behavior to be specified on the DFDL schema.

Implementation

A new extension property is added called df dl x: runt i meProperti es. The value of this property is a space-separated list of key/value pairs, with each
keys and pairs separated by an equals sign (=). For example:

<xs: el ement name="xs:string" dfdlx:runti meProperti es="keyl=val uel key2=val ue2" ... />

Because the use-cases only include transforming the infoset text, this property is valid only on simple types.

At schema compilation time, this key/value pairs are parsed and converted to a Map. If a duplicate key is found in this list, the previous is discarded. If df dI
X: runti meProperti es is not defined, then an empty Map is used.

The Map, whether empty or not, is added as a new member of the El ement Runt i neDat a class called r unt i nePr operti es. Because this property is
valid on on simple elements, this member for complex El ement Runt i neDat a instances is always the empty Map.

Parse

When an | nf oset Qut put t er is supposed to output a simple element, Daffodil calls the st ar t Si npl e method, passing in the DI Si npl e. For | nf oset
Qut put t er implementations that wish to alter how the simple text is output, the r unt i mePr oper ti es map can be accesses from the er d member of
the DI Si npl e parameter. For example using the Scala API:

class MyInfosetQutputter extends |InfosetQutputter {

override def startSinple(sinple: DI Sinple): Boolean = {
val runtimeProperties = sinple.erd.runti meProperties
val keylValue = runtimeProperties.getO Default("keyl", "defaultValuel")
val key2Value = runtineProperties.get OrDefault("key2", "defaultValue2")
val sinpleText = sinple.dataVal ueAsString
/1 redact or trasform sinpleText based on keyl/ key2 val ues, and then output sinpleText

Unparse

When Daffodil needs the simple text of a simple element during unparse, it calls the get Si npl eText method on the | nf oset | nput t er. A new function
is added to the | nf oset | nput t er API, with the same get Si npl eText name as the existing function, but it takes two parameters. The first is the Nodel
nf 0. Ki nd, like the existing get Si npl eText function. The second parameter is the runtime properties Map . To allow for backwards compatibility, a defult
implementation of this function is added which calls the existing get Si npl eText function with a single argument:

abstract class Infosetlnputter ... {
def get Si npl eText (pri nNode: Nodel nfo. Kind, runtimeProperties: Map[String, String)): String = {

get Si npl eText (pri mNode)

}
}

For I nf oset | nput t er implementations that want to redact/transform simple text before returning it to Daffodil to be unparsed, they can override this new
method and use the runt i nePr operti es . For example:

class Myl nfosetlnputter extends Infosetlnputter {
override def getSinpl eText(primode: Nodelnfo.Kind, runtineProperties: Map[String, String)): String = {
val sinpleText = ... // get the sinple text for this current event
val keylValue = runtimeProperties.getO Default("keyl", "defaultValue")
val key2Value = runtineProperties.get OrDefault("key2", "defaultValue")
/1 redact or transform sinpleText base on keyl/ key2 val ues, and return
val transfornedSi npl eText = ...
transf or mredSi npl eText

Example Implementation: stringAsXml

A primary use case for this feature is the ability to parse a simple element with an xs: st ri ng type expected to contain XML content. Rather than
escaping the XML string and treating it like simple content, we instead want to output it as if it were part of the XML infoset. Similarly, when unparsing, we
want to treat all the children of a particular infoset element as if it raw text so that it unparses as a normal string.

This was implemented in Daffodil 3.4.0 in as part as commit 3b213ce30b.

https://github.com/apache/daffodil/commit/3b213ce30b1974ecd9fc2260e4f081240da89874

	Proposal: Runtime Properties

