
KIP-816: Topology changes without local state reset

Status
Motivation
Background
Non-goals
Proposed Changes

New Configuration Properties
Implementation Details

Example movement
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Alternative 1: De-couple local state directories from Task ID
Migration
Challenges

Alternative 2: Change Task ID prefix from an ordinal to a stable hash
Challenges

Status
Current state: Under Discussion

Discussion thread: here

JIRA: KAFKA-13627

Motivation
When changes are made to a Topology that modifies its structure, users must use the Application Reset tool to reset the local state of their application
prior to deploying the change. Consequently, these changes require rebuilding all local state stores from their changelog topics in Kafka.

The time and cost of rebuilding state stores is determined by the size of the state stores, and their recent write history, as rebuilding a store entails
replaying all recent writes to the store. For applications that have very large stores, or stores with extremely high write-rates, the time and cost of rebuilding
all state in the application can be prohibitively expensive. This is a significant barrier to building highly scalable applications with good availability.

Changes to the Topology that do not directly affect a state store should not require the local state of that store to be reset/deleted. This would allow
applications to scale to very large data sets, whilst permitting the application behaviour to evolve over time.

Background
Tasks in a Kafka Streams Topology are logically grouped by “Topic Group'' (aka. Subtopology). Topic Groups are assigned an ordinal (number), based on
their position in the Topology. This Topic Group ordinal is used as the prefix for all Task IDs: <topic-group-ordinal>_<partition-number>, e.g. 2_
14

If new Topic Groups are added, old Topic Groups are removed, or existing Topic Groups are re-arranged, this can cause the assignment of ordinals to
change even for Topic Groups that have not been modified.

When the assignment of ordinals to Topic Groups changes, existing Tasks are invalidated, as they no longer correspond to the correct Topic Groups.
Local state is located in directories that include the Task ID (e.g. /state/dir/2_14/mystore/rocksdb/…), and since the Tasks have all been
invalidated, all existing local state directories are also invalid.

Attempting to start an application that has undergone these ordinal changes, without first clearing the local state, will cause Kafka Streams to attempt to
use the existing local state for the wrong Tasks. Kafka Streams detects this discrepancy and prevents the application from starting.

Non-goals
It is not a goal to permit different versions of a Kafka Streams Topology to co-exist in the same Consumer Group.

We only intend to allow Kafka Streams to maximise use of existing local state when deploying a new version of a Topology. When deploying such
upgrades, the entire cluster will still need to be brought down and brought back up together, instead of a rolling restart.

Proposed Changes

New Configuration Properties

https://lists.apache.org/thread/wmgpx0srx9vyd0gqzjcpc2bnyblvqkxf
https://issues.apache.org/jira/browse/KAFKA-13627

Property Default Description

automatic.
state.
relocation

true When , on startup, Kafka Streams will automatically relocate state stores it finds on-disk that are no longer in the true
correct location. This can occur after changes to a Topology that re-order Sub-Topologies such that Task IDs for existing
state are no longer valid.

Implementation Details

When is called, if is enabled, Streams will automatically search the configured state KafkaStreams#start() automatic.state.relocation
directory and move Task state directories to the correct locations according to the current Topology graph.

The "correct" location is defined as: All components of the Path are the same as the current Path, except for the sub-topology ordinal, which is determined
from the current Topology graph, by looking for the sub-topology that references the store, by-name.

Example movement

state.dir/ _14/rocksdb/mystore2 state.dir/ _14/rocksdb/mystore3

Compatibility, Deprecation, and Migration Plan
This change is backwards compatible with previous versions of Kafka Streams. No deprecation or migration is necessary.

The configuration is provided to enable users to disable this behaviour if they need to, but is enabled by default automatic.state.relocation
because it should not cause problems for any users.

Moving directories in all modern filesystems is a very cheap operation and O(1), so the performance impact on application start-up, even for application
instances with a large number of stateful Tasks, should be minimal.

Rejected Alternatives
Several alternative solutions were explored, but were found to require considerable changes to the internals of Kafka Streams, making them difficult to
implement safely.

Alternative 1: De-couple local state directories from Task ID

Local state will be stored under a revised directory structure that no longer includes Task ID in the path.

The current directory structure is: /state/dir/<task id>/rocksdb/<store name>

The new directory structure will be: /state/dir/<store name>/<partition number>/rocksdb

All local state, including .checkpoint files will be moved under this new path.

Existing Task ID directories will still be used for Task-specific state; notably .lock files.

When a Kafka Streams cluster assigns Tasks to members, any existing local state is used as a factor to determine which member is assigned each Task.
The mapping of StateStore to Task is already known during assignment, and will be used in an updated assignment algorithm that uses the new
StateStore paths to inform Task assignment.

Migration

A migration tool will enable users to automatically move existing local state from the old locations to the new locations. This tool must be used between
shutting down the old version of the application and starting up the new version, during an upgrade of Kafka Streams.

Users that choose not to use this tool to migrate their local state will need to reset their application’s state, to ensure that stale local state does not remain
under old paths.

Challenges

Much of the Kafka Streams codebase assumes that TaskId is encoded directly in the state directory path. See .StateDirectory
Task-wide files, which can contain entries for state stores, are currently stored in the task directory. If we decouple the .checkpoint multiple
directory from specific Tasks, we will need to either find another way to store these files, or retain the existing task directories exclusively for Task-
wide meta-data.

Alternative 2: Change Task ID prefix from an ordinal to a stable hash

The instability of the Task Group ordinal is the reason that existing local state becomes invalidated when the Topology changes. Using a more stable
identifier will solve this problem under most circumstances.

The TaskID’s will be changed from an int to a 64-bit murmur2 hash of all the topics within the topic group, lexically ordered. This will be topicGroupId
an API breaking change, as it will change the types in the API of SubscriptionInfoData.

This will ensure that local state will only be invalidated if the set of topics in an existing Subtopology is modified; and only the local state for that
Subtopology will be invalidated.

When this invalidation of state does occur, it will not cause conflicts*, because the local state path for the new Task ID will be guaranteed* not to exist.

* There is a small risk of hash collision that will need to be addressed.

Challenges

Still results in state going unnecessarily missing for sub-topologies (i.e. when a source topic is added to an existing sub-topology).some
Hash collisions that would need to be mitigated, despite being unlikely.
Massive changes required throughout Kafka Streams codebase.

	KIP-816: Topology changes without local state reset

