Multi-language Pipelines Tips

This page includes tips and troubleshooting information regarding Apache Beam's multi-language pipelines framework. For full documentation on multi-
language pipelines, please see here.

® “java: command not found" when starting the pipeline
® grpc error "failed to connect to all addresses" when submitting the job
® "KeyError: 'beam:coders:javasdk:0.1" when expanding the transform using expansion service
® “java.lang.lllegalArgumentException: Unknown Coder URN beam:coder:pickled_python:v1l" when runner a Python pipeline
® "Unknown Coder URN beam:coder:pickled_python:v1" when running a Java pipeline that uses Python cross-language transforms
® How to set Java log level from a Python pipeline that uses Java transforms
® Debugging a Python Test that calls a Java transform
O Set up the input arguments to the Python test.
© Run the Java expansion service
© Run the Python test
© Notes
® Running a cross-language transform that uses a different version of an external transform

"Java: command not found" when starting the pipeline

This usually occurs due to java command not being available when submitting a multi-language pipeline that uses a Java transform to the Beam runner.
Multi-language wrappers implemented in the pipeline SDK may try to automatically start up a Java expansion service, hence java command being
available in the system is a pre-requisite. This can be resolved by installing JDK in the machine where the job is submitted from and adding the JDK
directory with the java binary to the environment variable PATH.

grpc error "failed to connect to all addresses" when submitting the job

This usually occurs when an expansion service that is used by the pipeline is not available. For example, it could be that you simply forgot to start the
expansion service before running the job. Or it could be that a Java expansion service that is automatically started up by a wrapper implemented in the
pipeline SDK failed for some reason.

"KeyError: 'beam:coders:javasdk:0.1™ when expanding the transform using
expansion service

This occurs due to Java expansion service returning an expanded transform that uses a Java specific coder as one of its outputs. Cross-language
transforms require coders used at the SDK boundary to be Beam Standard Coders that can be interpreted by all SDKs. Note that internal sub-transforms
of the expanded transforms may choose Java specify coders. What matters are final outputs produced by the expanded Java transform.

The solution will be to update the user's transform to produce output PCollection types that use standard coders at the SDK boundaries.

"Java.lang.lllegalArgumentException: Unknown Coder URN beam:coder:
pickled python:v1l" when runner a Python pipeline

This usually means that an expansion request that is sent from Python SDK to a Java expansion service contained Python specific PickleCoder that Java
SDK cannot interpret. For example, this could be due to following.

® Input PCollection that is fed into the cross-language transform in Python side uses a Python specific type. In this case, the PTranform that
produced the input PCollection has to be updated to produce outputs that use Beam's Standard Coders to make sure Java side can interpret
such coders.

® Input PCollection uses standard coders but Python type inferencing results in picking up the PickleCoder. This can usually be resolved by
annotating the predecessor Python transform with the correct type annotation using the with_output_types tag. See this Jira for an example.

"Unknown Coder URN beam:coder:pickled python:v1" when running a Java
pipeline that uses Python cross-language transforms

This usually means that Python SDK was not able to properly determine a portable output PCollection type when expanding the cross-language transform.
So it ended up picking the default PickleCoder.

But Java SDK is unable to interpret this, so it will fail when trying to parse the expansion response from the Python SDK.

The solution is to provide a hint to the Python SDK regarding the element type(s) of the output PCollection(s) of the cross-language transform. This can be
provided using the withOutputCoder or withOutputCoders methods of the PythonExternalTransform API.

https://beam.apache.org/documentation/programming-guide/#multi-language-pipelines
https://github.com/apache/beam/blob/05428866cdbf1ea8e4c1789dd40327673fd39451/model/pipeline/src/main/proto/beam_runner_api.proto#L784
https://github.com/apache/beam/blob/05428866cdbf1ea8e4c1789dd40327673fd39451/model/pipeline/src/main/proto/beam_runner_api.proto#L784
https://issues.apache.org/jira/browse/BEAM-11938
https://github.com/apache/beam/blob/cd5f88abbb571618b633b6a0068ef4f14fac55d3/sdks/java/extensions/python/src/main/java/org/apache/beam/sdk/extensions/python/PythonExternalTransform.java#L259
https://github.com/apache/beam/blob/cd5f88abbb571618b633b6a0068ef4f14fac55d3/sdks/java/extensions/python/src/main/java/org/apache/beam/sdk/extensions/python/PythonExternalTransform.java#L243
https://github.com/apache/beam/blob/master/sdks/java/extensions/python/src/main/java/org/apache/beam/sdk/extensions/python/PythonExternalTransform.java

How to set Java log level from a Python pipeline that uses Java transforms

For supported runners (e.g. portable runners and Dataflow runner), you can set the log level of Java transforms in the same way of setting python module
log level overrides, specifically, using the --sdk_harness_log_level_overrides pipeline option. The python_underline_style option names will be
automatically translated to Java smallCamel style and recognized by the Java SDK harness.

If the runner does not support the automatic mapping of options, One can try adding the corresponding pipeline option as a local pipeline option explicitly
in Python side. For example, to suppress all logs from Java org.apache.kafka package you can do following.

1. Add a Python PipelineOption that represents the corresponding Java PipelineOption available here. This can be simply added to your Python
program that starts up the Beam job.

cl ass JavalLoggi ngOpti ons(Pi pel i neOpti ons):
@ assnet hod
def _add_argparse_args(cls, parser):
par ser. add_ar gunent (
' --sdkHar nessLogLevel Overri des',
defaul t={},
t ype=j son. | oads,
hel p=(
"Java log level overrides'))

2. Specify the additional PipelineOption as a parameter when running the Beam pipeline.

--sdkHar nessLogLevel Overrides ' {"org. apache. kaf ka": "ERROR'}"'

Debugging a Python Test that calls a Java transform

The public documentation is great on creating and using cross-language transforms. For developers, however, running tests and debugging them is a bit
different.

We will showcase how to debug the following test sql _t est. Sql Tr ansf or nifest . t est _two_pcol | _sanme_schena.

Set up the input arguments to the Python test.

Beside the test function, right click the play button, and click "Modify Run Configuration..."

https://github.com/apache/beam/blob/a75ccc8d30a9d39ce2e92dc74189df8da9a4b240/sdks/java/core/src/main/java/org/apache/beam/sdk/options/SdkHarnessOptions.java#L84
https://beam.apache.org/documentation/programming-guide/#multi-language-pipelines

test _two_pcoll_same_schemal
Run 'pyte (-

Debug 'pytest for sgl_test....
L, Run 'pytest for sql_test...." with Coverage
(). Profile 'pytest for sql_test
=) Concurrency Diagram for

Maodify Run Configuration...

| b
common_numb

1 . hum

| beam.transforms

Mon_num

In Addi ti onal Argunents , add the arguments. For this example, we add

--test-pipeline-options="--runner=FlinkRunner --beam services='{\":sdks:java: extensions: sql: expansi on-servi ce:
shadowJar\": \"l ocal host:8097\"}""

Edit Run Configuration: 'pytest for sql_test.SqiTransformTest.test_two_pcoll_same_schema’

Name: pytest for sql_test.SqglTransformTest.test_two_pcoll_same_scherr arallel run

Configuration Logs

Target: (e Module name Script path Custom

Keywords

Additional Arguments --beam_s -es='{\":sdks:java:extensions:sql:expansion-service:shadowJar\": \"localhost:8097\"}""

Run the Java expansion service

The Gradle build file defines how to run the expansion service. To do this manually, go to the Gradle tab in Intellij, go to this path beanf sdks/ j ava
/ ext ensi ons/ sql / expansti on-servi ce/ t asks/ ot her/ , and find the “runExpansionService entry.

® To run the expansion service without debugging, right click r unExpansi onSer vi ce , and simply click "run".
® |f you want to debug the Java code, set breakpoints in the IDE in Java files that are part of the expansion service. (i.e. ExpansionService.Java).
Then click "Debug"

https://github.com/apache/beam/blob/master/sdks/java/extensions/sql/expansion-service/build.gradle

Gradle

S+ w I T

P e

> ide

v other
audit
checkstylebain
checkstyleTest
cleanEclipseClasspath
cleanEclipseJdt
cleanEclipseProject
cleanUp
compileJava
compileTestJava
components
dependencyReport
dependentComponents
eclipseClasspath
eclipseJdt
eclipseProject
htmiDependencyReport
model
packageTests
processResources
processTestResources
propertyReport
runExpansionService

Run 'beam:sdks:java:exten...'
Debug 'beam:sdks:java:exten...'
U, Run 'beam:sdks:java:exten...' with Coverage

% Run 'beam:sdks:java:exten...' with 'Async Profiler’
@ Run 'beam:sdks:java:exten...' with 'Java Flight Recorder'

Modify Run Configuration...

Execute Before Sync

Execute After Sync

Execute After Build
Execute Before Rebuild

Execute After Rebuild

A .
ASSI

Run the Python test

® |f you don't want to debug the Python test, right click the button next to the test, and click Run ' pytest for sql _test...'
* |f you do want to debug the Python test, first set the breakpoints in your code. Then right click the button next to the test, and click ' Debug
"pytest for sql_test...'

Notes

You can choose to run only Python in debug mode and the expansion service not in debug mode; Java expansion service in debug mode and the Python
code not in debug mode; both in debug mode; or neither in debug mode.

Running a cross-language transform that uses a different version of an
external transform

By default, cross-language transforms released with Beam will automatically startup an expansion service that includes external transforms. Usually these
transforms will be from the same Beam release as the pipeline SDK. For example, when using cross-language Kafka transforms from Python SDK,
underlying Java KafkalO transforms will be from the same released SDK version. If you need to use a different external SDK version you can do the
following.

® Startup an expansion service that includes external transforms from a compatible SDK version. See here for more details.
® Specify the expansion service when defining the cross-language transform in your pipeline. For example, expansion service used by Python
ReadFromKafka transform can be overridden here.

https://beam.apache.org/documentation/sdks/python-multi-language-pipelines/#choose-an-expansion-service
https://github.com/apache/beam/blob/5b0e92f691486c034d6d4f4b315d3a7a7fe66cf5/sdks/python/apache_beam/io/kafka.py#L137

	Multi-language Pipelines Tips

