
TsFile Format
TsFile Format

1. TsFile Design

This is an introduction to the design details of TsFile.

1.1 Variable Storage

Data Type Hardcode

0: BOOLEAN
1: INT32 (int)
2: INT64 (long)
3: FLOAT
4: DOUBLE
5: TEXT (String)

Encoding Type Hardcode

To improve the efficiency of data storage, it is necessary to encode data during data writing, thereby reducing the amount of disk space used. In
the process of writing and reading data, the amount of data involved in the I/O operations can be reduced to improve performance. IoTDB
supports the following encoding methods for different data types:

0: PLAIN

PLAIN encoding, the default encoding mode, i.e, no encoding, supports multiple data types. It has high compression and
decompression efficiency while suffering from low space storage efficiency.

1: DICTIONARY

DICTIONARY encoding is lossless. It is suitable for TEXT data with low cardinality (i.e. low number of distinct values). It is not
recommended to use it for high-cardinality data.

2: RLE

Run-length encoding is suitable for storing sequence with continuous integer values, and is not recommended for sequence
data with most of the time different values.
Run-length encoding can also be used to encode floating-point numbers, while it is necessary to specify reserved decimal digits
(MAX_POINT_NUMBER) when creating time series. It is more suitable to store sequence data where floating-point values
appear continuously, monotonously increasing or decreasing, and it is not suitable for storing sequence data with high precision
requirements after the decimal point or with large fluctuations.

TS_2DIFF and RLE have precision limit for data type of float and double. By default, two decimal places
are reserved. GORILLA is recommended.

3: DIFF
4: TS_2DIFF

Second-order differential encoding is more suitable for encoding monotonically increasing or decreasing sequence data, and is
not recommended for sequence data with large fluctuations.

5: BITMAP
6: GORILLA_V1

GORILLA encoding is lossless. It is more suitable for numerical sequence with similar values and is not recommended for
sequence data with large fluctuations.
Currently, there are two versions of GORILLA encoding implementation, it is recommended to use GORILLA instead of GORILL
A_V1 (deprecated).
Usage restrictions: When using GORILLA to encode INT32 data, you need to ensure that there is no data point with the value I
nteger.MIN_VALUE in the sequence. When using GORILLA to encode INT64 data, you need to ensure that there is no data
point with the value Long.MIN_VALUE in the sequence.

7: REGULAR
8: GORILLA
9: ZIGZAG

ZigZag encoding maps signed integers to unsigned integers so that numbers with a small absolute value have a small variant
encoded value too.

The correspondence between the data type and its supported encodings

Data Type Supported Encoding

BOOLEAN PLAIN, RLE

INT32 PLAIN, RLE, TS_2DIFF, GORILLA, ZIGZAG

INT64 PLAIN, RLE, TS_2DIFF, GORILLA, ZIGZAG

FLOAT PLAIN, RLE, TS_2DIFF, GORILLA

DOUBLE PLAIN, RLE, TS_2DIFF, GORILLA

TEXT PLAIN, DICTIONARY

1.2 TsFile Overview

<!-- TODO

Here is the structure diagram of TsFile.

blocked URL

This TsFile contains two entities: d1, d2. Each entity contains two measurements: s1, s2. 4 timeseries in total. Each timeseries contains 2 Chunks.

-->

There are two parts in TsFile: Data Area and Index Area.

There are three concepts, from small to large, in Data Area:

Page: A page is a sequence of timeseries. It is the smallest unit in which a data block is deserialized.
Chunk: A chunk contains several pages in one timeseries. It is the smallest unit in which a data block is read by IO.
ChunkGroup: A chunk group contains several chunks in one entity.

There are three parts in Index Area:

TimeseriesIndex organized by timeseries, containing a header and list of ChunkIndex. The header records data type and statistics (maximum
and minimum timestamps, etc.) of a time series in the file. The data block index list records the offsets of the chunks in the file, and the related
statistics (maximum and minimum timestamps, etc.).
IndexOfTimeseriesIndex for index the offsets of TimeseriesIndex in the file.
BloomFilter for entities.

Here is the structure diagram of TsFile:

blocked URL

This TsFile contains two entities: d1, d2. Each entity contains three measurements: s1, s2, s3. 6 timeseries in total. Each timeseries contains 2 Chunks.

Query Process of reading d1.s1:

Deserialize IndexOfTimeseriesIndex, get the position of TimeseriesIndex of d1.s1
Deserialize and get the TimeseriesIndex of d1.s1
According to TimeseriesIndex of d1.s1, deserialize all ChunkIndex of d1.s1
According to each ChunkIndex of d1.s1, read its Chunk

1.2.1 Magic String and Version Number

A TsFile begins with a 6-byte magic string (TsFile) and a 6-byte version number (000002).

1.2.2 Data Area

ChunkGroup

A ChunkGroup stores the data of an entity for a period of time. It consists of several Chunk, a byte delimiter0x00 and a ChunkFooter.

Chunk

A Chunk stores the data of a measurement for a period of time. The data in a chunk is stored in time increment order. It consists of a byte 0x01 as the
marker, following a ChunkHeader and an array of Page.

ChunkHeader

Member Type Description

measurementID String Name of measurement

dataSize int Size of this chunk

dataType TSDataType Data type of this chuck

compressionType CompressionType Compression Type

encodingType TSEncoding Encoding Type

https://user-images.githubusercontent.com/33376433/123052025-f47aab80-d434-11eb-94c2-9b75429e5c54.png
https://user-images.githubusercontent.com/19167280/123542462-6710c180-d77c-11eb-9afb-a1b495c82ea9.png

numOfPages int Number of pages

Page

A Page stores a sequence of timeseries. It is the smallest unit in which a data block is deserialized. It contains a PageHeader and the actual data
(encoded time-value pairs).

PageHeader Structure:

Member Type Description

uncompressedSize int Data size before compressing

compressedSize int Data size after compressing(if use SNAPPY)

statistics Statistics Statistics values

Here is the detailed information for statistics:

Member Description DoubleStatistics FloatStatistics IntegerStatistics LongStatistics BinaryStatistics BooleanStatistics

count number of time-value points long long long long long long

startTime start time long long long long long long

endTime end time long long long long long long

minValue min value double float int long - -

maxValue max value double float int long - -

firstValue first value double float int long Binary boolean

lastValue last value double float int long Binary boolean

sumValue sum value double double double double - -

ChunkGroupFooter

Member Type Description

entityID String Name of entity

dataSize long Data size of the ChunkGroup

numberOfChunks int Number of chunks

1.2.3 Index Area

1.2.3.1 ChunkIndex

The first part of index is ChunkIndex :

Member Type Description

measurementUid String Name of measurement

offsetOfChunkHeader long Start offset of ChunkHeader

tsDataType TSDataType Data type

statistics Statistics Statistic values

1.2.3.2 TimeseriesIndex

The second part of index is TimeseriesIndex:

Member Type Description

measurementUid String Name of measurement

tsDataType short Data type

startOffsetOfChunkIndexList long Start offset of ChunkIndex list

ChunkIndexListDataSize int ChunkIndex list size

statistics Statistics Statistic values

1.2.3.3 IndexOfTimeseriesIndex (Secondary Index)

The third part of index is IndexOfTimeseriesIndex:

Member Type Description

IndexTree IndexNode Root index node of IndexTree

offsetOfIndexArea long offset of index area

bloomFilter BloomFilter bloom filter

IndexNode has members as below:

Member Type Description

children List<IndexEntry> IndexEntry list

endOffset long EndOffset of this IndexNode

nodeType IndexNodeType IndexNode type

IndexEntry has members as below:

Member Type Description

name String Name of related entity or measurement

offset long offset

All IndexNode forms an index tree (secondary index) like a B+ tree, which consists of two levels: entity index level and measurement index level. The
IndexNodeType has four enums: INTERNAL_ENTITY, LEAF_ENTITY, INTERNAL_MEASUREMENT, LEAF_MEASUREMENT, which indicates the internal or
leaf node of entity index level and measurement index level respectively. Only the LEAF_MEASUREMENT nodes point to TimeseriesIndex.

Consider the introduction of multi-variable timeseries, each multi-variable timeseries is called a vector with a TimeColumn. For example, the multi-variable
timeseries vector1 belongs to the entity d , with two measurements s1, s2. i.e. d1.vector1.(s1,s2), we call vector1 as TimeColumn. In the storage,
you need to store an extra Chunk of vector1.

Except for TimeColumn, measurements of a multi-variable timeseries are concatenated with TimeColumn when constructing IndexOfTimeseriesIndex
, e.g. we Indicates vector1.s1 as a measurement.

From v0.13, IoTDB supports Multi-variable Timeseries. A multi-variable measurements of an entity corresponds to a multi-variable
timeseries. These timeseries are called multi-variable timeseries, also called aligned timeseries.

Multi-variable timeseries need to be created, inserted and deleted at the same time. However, when querying, you can query each
sub-measurement separately.

By using multi-variable timeseries, the timestamp columns of a group of multi-variable timeseries need to be stored only once in
memory and disk when inserting data, instead of once per timeseries.

https://iotdb.apache.org/UserGuide/Master/Data-Concept/Data-Model-and-Terminology.html

Here are seven detailed examples.

The degree of the index tree (that is, the max number of each node's children) could be configured by users, and is 256 by default. In the examples below,
we assume max_degree_of_index_node = 10.

Note that the keys are arranged in dictionary order in each type of nodes (ENTITY, MEASUREMENT) of the index tree. In the following example, we
assumed that the dictionary order di<dj if i<j. (Otherwise, in fact, the dictionary order of [d1,d2,... .d10] should be [d1,d10,d2,.... .d9])

Example 1~4 is an example of a single-variable timeseries.

Example 5~6 is an example of a multi-variale timeseries. Example 7 is a comprehensive example.

Example 1: 5 entities with 5 measurements each

blocked URL In the case of 5 entities with 5 measurements each: Since the numbers of entities and measurements are both no more than max_de
gree_of_index_node, the tree has only measurement index level by default. In this level, each IndexNode is composed of no more than 10
index entries. The root node is INTERNAL_ENTITY type, and the 5 index entries point to index nodes of related entities. These nodes point to Tim
eseriesIndex directly, as they are LEAF_MEASUREMENT type.
Example 2: 1 entity with 150 measurements

blocked URL

In the case of 1 entity with 150 measurements: The number of measurements exceeds max_degree_of_index_node, so the tree has only
measurement index level by default. In this level, each IndexNode is composed of no more than 10 index entries. The nodes that point to TimeseriesInd
ex directly are LEAF_MEASUREMENT type. Other nodes are not leaf nodes of measurement index level, so they are INTERNAL_MEASUREMENT type. The
root node is INTERNAL_ENTITY type.

Example 3: 150 entities with 1 measurement each

blocked URL

In the case of 150 entities with 1 measurement each: The number of entities exceeds max_degree_of_index_node, so the entity index level and
measurement index level of the tree are both formed. In these two levels, each IndexNode is composed of no more than 10 index entries. The nodes that
point to TimeseriesIndex directly are LEAF_MEASUREMENT type. The root nodes of measurement index level are also the leaf nodes of entity index
level, which are LEAF_ENTITY type. Other nodes and root node of index tree are not leaf nodes of entity level, so they are INTERNAL_ENTITY type.

Example 4: 150 entities with 150 measurements each

blocked URL

In the case of 150 entities with 150 measurements each: The numbers of entities and measurements both exceed max_degree_of_index_node, so the
entity index level and measurement index level are both formed. In these two levels, each IndexNode is composed of no more than 10 index entries. As is
described before, from the root node to the leaf nodes of entity index level, their types are INTERNAL_ENTITY and LEAF_ENTITY; each leaf node of
entity index level can be seen as the root node of measurement index level, and from here to the leaf nodes of measurement index level, their types are IN
TERNAL_MEASUREMENT and LEAF_MEASUREMENT.

Example 5: 1 entities with 2 vectors, 9 measurements for each vector

Example 6: 1 entities with 2 vectors, 15 measurements for each vector

https://user-images.githubusercontent.com/19167280/125254013-9d2d7400-e32c-11eb-9f95-1663e14cffbb.png
https://user-images.githubusercontent.com/19167280/125254022-a0c0fb00-e32c-11eb-8fd1-462936358288.png
https://user-images.githubusercontent.com/19167280/122771008-9a64d380-d2d8-11eb-9044-5ac794dd38f7.png
https://user-images.githubusercontent.com/19167280/122677241-1a753580-d214-11eb-817f-17bcf797251f.png

Example 7: 2 entities, measurements of entities are shown in the following table

entity: d0 entity: d1

Single-variable Tmeseriess0,s1...,s4 Single-variable Tmeseriess0,s1,...s14

Multi-variable Timeseriesv0.(s5,s6,...,s14) Multi-variable Timeseriesv0.(s15,s16,..s18)

Single-variable Tmeseriesz15,z16,..,z18

The IndexTree is designed as tree structure so that not all the TimeseriesIndex need to be read when the number of entities or measurements is too
large. Only reading specific IndexTree nodes according to requirement and reducing I/O could speed up the query. More reading process of TsFile in
details will be described in the last section of this chapter.

1.2.4 Magic String

A TsFile ends with a 6-byte magic string (TsFile).

Congratulations! You have finished the journey of discovering TsFile.

2. A TsFile Visualization Example

v0.8

blocked URL

v0.9 / 000001

blocked URL

v0.10 / 000002

https://user-images.githubusercontent.com/33376433/65209576-2bd36000-dacb-11e9-9e43-49e0dd01274e.png
https://user-images.githubusercontent.com/33376433/69341240-26012300-0ca4-11ea-91a1-d516810cad44.png

blocked URL

v0.12 / 000003

blocked URL

3. TsFile Tool Set

3.1 IoTDB Data Directory Overview Tool

After building the server, the startup script of this tool will appear under the server\target\iotdb-server-{version}\tools\tsfileToolSet
directory.

Command:

For Windows:

.\print-iotdb-data-dir.bat <path of your IoTDB data directory or directories separated by comma> (<path of the
file for saving the output result>)

For Linux or MacOs:

./print-iotdb-data-dir.sh <path of your IoTDB data directory or directories separated by comma> (<path of the
file for saving the output result>)

An example on Windows:

D:\iotdb\server\target\iotdb-server-{version}\tools\tsfileToolSet>.\print-iotdb-data-dir.bat D:\\data\data
|````````````````````````
Starting Printing the IoTDB Data Directory Overview
|````````````````````````
output save path:IoTDB_data_dir_overview.txt
TsFile data dir num:1
21:17:38.841 [main] WARN org.apache.iotdb.tsfile.common.conf.TSFileDescriptor - Failed to find config file iotdb-
engine.properties at classpath, use default configuration
|==
|D:\\data\data
|--sequence
| |--root.ln.wf01.wt01
| | |--1575813520203-101-0.tsfile
| | |--1575813520203-101-0.tsfile.resource
| | | |--device root.ln.wf01.wt01, start time 1 (1970-01-01T08:00:00.001+08:00[GMT+08:00]), end time 5 (1970-
01-01T08:00:00.005+08:00[GMT+08:00])
| | |--1575813520669-103-0.tsfile
| | |--1575813520669-103-0.tsfile.resource
| | | |--device root.ln.wf01.wt01, start time 100 (1970-01-01T08:00:00.100+08:00[GMT+08:00]), end time 300
(1970-01-01T08:00:00.300+08:00[GMT+08:00])
| | |--1575813521372-107-0.tsfile
| | |--1575813521372-107-0.tsfile.resource
| | | |--device root.ln.wf01.wt01, start time 500 (1970-01-01T08:00:00.500+08:00[GMT+08:00]), end time 540
(1970-01-01T08:00:00.540+08:00[GMT+08:00])
|--unsequence
| |--root.ln.wf01.wt01
| | |--1575813521063-105-0.tsfile
| | |--1575813521063-105-0.tsfile.resource
| | | |--device root.ln.wf01.wt01, start time 10 (1970-01-01T08:00:00.010+08:00[GMT+08:00]), end time 50 (1970-
01-01T08:00:00.050+08:00[GMT+08:00])
|==

3.2 TsFileResource Print Tool

After building the server, the startup script of this tool will appear under the server\target\iotdb-server-{version}\tools\tsfileToolSet
directory.

Command:

For Windows:

.\print-tsfile-resource-files.bat <path of your TsFileResource directory>

For Linux or MacOs:

./print-tsfile-resource-files.sh <path of your TsFileResource directory>

An example on Windows:

https://user-images.githubusercontent.com/19167280/95296983-492cc500-08ac-11eb-9f66-c9c78401c61d.png
https://user-images.githubusercontent.com/33376433/123052025-f47aab80-d434-11eb-94c2-9b75429e5c54.png

D:\iotdb\server\target\iotdb-server-{version}\tools\tsfileToolSet>.\print-tsfile-resource-files.bat D:
\data\data\sequence\root.vehicle
|````````````````````````
Starting Printing the TsFileResources
|````````````````````````
12:31:59.861 [main] WARN org.apache.iotdb.db.conf.IoTDBDescriptor - Cannot find IOTDB_HOME or IOTDB_CONF
environment variable when loading config file iotdb-engine.properties, use default configuration
analyzing D:\data\data\sequence\root.vehicle\1572496142067-101-0.tsfile ...
device root.vehicle.d0, start time 3000 (1970-01-01T08:00:03+08:00[GMT+08:00]), end time 100999 (1970-01-01T08:01:
40.999+08:00[GMT+08:00])
analyzing the resource file finished.

3.3 TsFile Sketch Tool

After building the server, the startup script of this tool will appear under the server\target\iotdb-server-{version}\tools\tsfileToolSet
directory.

Command:

For Windows:

.\print-tsfile-sketch.bat <path of your TsFile> (<path of the file for saving the output result>)

Note that if <path of the file for saving the output result> is not set, the default path "TsFile_sketch_view.txt" will be used.

For Linux or MacOs:

./print-tsfile-sketch.sh <path of your TsFile> (<path of the file for saving the output result>)

Note that if <path of the file for saving the output result> is not set, the default path "TsFile_sketch_view.txt" will be used.

An example on macOS:

/iotdb/server/target/iotdb-server-{version}/tools/tsfileToolSet$./print-tsfile-sketch.sh test.tsfile
````````````````````````
Starting Printing the TsFile Sketch
````````````````````````
TsFile path:test.tsfile
Sketch save path:TsFile_sketch_view.txt
-------------------------------- TsFile Sketch --------------------------------
file path: test.tsfile
file length: 15462
14:40:55.619 [main] INFO org.apache.iotdb.tsfile.read.TsFileSequenceReader - Start reading file test.tsfile
metadata from 15356, length 96

 POSITION| CONTENT
 -------- -------
 0| [magic head] TsFile
 6| [version number] 3
||||||||||||||||||||| [Chunk Group] of root.sg_1.d1, num of Chunks:4
 7| [Chunk Group Header]
 | [marker] 0
 | [deviceID] root.sg_1.d1
 21| [Chunk] of s6, numOfPoints:1000, time range:[0,999], tsDataType:INT64,
 startTime: 0 endTime: 999 count: 1000 [minValue:6,maxValue:9996,firstValue:6,
lastValue:9996,sumValue:5001000.0]
 | [chunk header] marker=5, measurementId=s6, dataSize=1826, serializedSize=9
 | [chunk] java.nio.HeapByteBuffer[pos=0 lim=1826 cap=1826]
 | [page] CompressedSize:1822, UncompressedSize:1951
 1856| [Chunk] of s4, numOfPoints:1000, time range:[0,999], tsDataType:INT64,
 startTime: 0 endTime: 999 count: 1000 [minValue:4,maxValue:9994,firstValue:4,
lastValue:9994,sumValue:4999000.0]
 | [chunk header] marker=5, measurementId=s4, dataSize=1826, serializedSize=9
 | [chunk] java.nio.HeapByteBuffer[pos=0 lim=1826 cap=1826]
 | [page] CompressedSize:1822, UncompressedSize:1951
 3691| [Chunk] of s2, numOfPoints:1000, time range:[0,999], tsDataType:INT64,
 startTime: 0 endTime: 999 count: 1000 [minValue:3,maxValue:9993,firstValue:3,
lastValue:9993,sumValue:4998000.0]
 | [chunk header] marker=5, measurementId=s2, dataSize=1826, serializedSize=9
 | [chunk] java.nio.HeapByteBuffer[pos=0 lim=1826 cap=1826]
 | [page] CompressedSize:1822, UncompressedSize:1951
 5526| [Chunk] of s5, numOfPoints:1000, time range:[0,999], tsDataType:INT64,
 startTime: 0 endTime: 999 count: 1000 [minValue:5,maxValue:9995,firstValue:5,
lastValue:9995,sumValue:5000000.0]
 | [chunk header] marker=5, measurementId=s5, dataSize=1826, serializedSize=9
 | [chunk] java.nio.HeapByteBuffer[pos=0 lim=1826 cap=1826]
 | [page] CompressedSize:1822, UncompressedSize:1951
||||||||||||||||||||| [Chunk Group] of root.sg_1.d1 ends
||||||||||||||||||||| [Chunk Group] of root.sg_1.d2, num of Chunks:4
 7361| [Chunk Group Header]
 | [marker] 0
 | [deviceID] root.sg_1.d2

 7375| [Chunk] of s2, numOfPoints:1000, time range:[0,999], tsDataType:INT64,
 startTime: 0 endTime: 999 count: 1000 [minValue:3,maxValue:9993,firstValue:3,
lastValue:9993,sumValue:4998000.0]
 | [chunk header] marker=5, measurementId=s2, dataSize=1826, serializedSize=9
 | [chunk] java.nio.HeapByteBuffer[pos=0 lim=1826 cap=1826]
 | [page] CompressedSize:1822, UncompressedSize:1951
 9210| [Chunk] of s4, numOfPoints:1000, time range:[0,999], tsDataType:INT64,
 startTime: 0 endTime: 999 count: 1000 [minValue:4,maxValue:9994,firstValue:4,
lastValue:9994,sumValue:4999000.0]
 | [chunk header] marker=5, measurementId=s4, dataSize=1826, serializedSize=9
 | [chunk] java.nio.HeapByteBuffer[pos=0 lim=1826 cap=1826]
 | [page] CompressedSize:1822, UncompressedSize:1951
 11045| [Chunk] of s6, numOfPoints:1000, time range:[0,999], tsDataType:INT64,
 startTime: 0 endTime: 999 count: 1000 [minValue:6,maxValue:9996,firstValue:6,
lastValue:9996,sumValue:5001000.0]
 | [chunk header] marker=5, measurementId=s6, dataSize=1826, serializedSize=9
 | [chunk] java.nio.HeapByteBuffer[pos=0 lim=1826 cap=1826]
 | [page] CompressedSize:1822, UncompressedSize:1951
 12880| [Chunk] of s5, numOfPoints:1000, time range:[0,999], tsDataType:INT64,
 startTime: 0 endTime: 999 count: 1000 [minValue:5,maxValue:9995,firstValue:5,
lastValue:9995,sumValue:5000000.0]
 | [chunk header] marker=5, measurementId=s5, dataSize=1826, serializedSize=9
 | [chunk] java.nio.HeapByteBuffer[pos=0 lim=1826 cap=1826]
 | [page] CompressedSize:1822, UncompressedSize:1951
||||||||||||||||||||| [Chunk Group] of root.sg_1.d2 ends
 14715| [marker] 2
 14716| [TimeseriesIndex] of root.sg_1.d1.s2, tsDataType:INT64
 | [ChunkIndex] s2, offset=3691
 | [startTime: 0 endTime: 999 count: 1000 [minValue:3,maxValue:9993,firstValue:
3,lastValue:9993,sumValue:4998000.0]]
 14788| [TimeseriesIndex] of root.sg_1.d1.s4, tsDataType:INT64
 | [ChunkIndex] s4, offset=1856
 | [startTime: 0 endTime: 999 count: 1000 [minValue:4,maxValue:9994,firstValue:
4,lastValue:9994,sumValue:4999000.0]]
 14860| [TimeseriesIndex] of root.sg_1.d1.s5, tsDataType:INT64
 | [ChunkIndex] s5, offset=5526
 | [startTime: 0 endTime: 999 count: 1000 [minValue:5,maxValue:9995,firstValue:
5,lastValue:9995,sumValue:5000000.0]]
 14932| [TimeseriesIndex] of root.sg_1.d1.s6, tsDataType:INT64
 | [ChunkIndex] s6, offset=21
 | [startTime: 0 endTime: 999 count: 1000 [minValue:6,maxValue:9996,firstValue:
6,lastValue:9996,sumValue:5001000.0]]
 15004| [TimeseriesIndex] of root.sg_1.d2.s2, tsDataType:INT64
 | [ChunkIndex] s2, offset=7375
 | [startTime: 0 endTime: 999 count: 1000 [minValue:3,maxValue:9993,firstValue:
3,lastValue:9993,sumValue:4998000.0]]
 15076| [TimeseriesIndex] of root.sg_1.d2.s4, tsDataType:INT64
 | [ChunkIndex] s4, offset=9210
 | [startTime: 0 endTime: 999 count: 1000 [minValue:4,maxValue:9994,firstValue:
4,lastValue:9994,sumValue:4999000.0]]
 15148| [TimeseriesIndex] of root.sg_1.d2.s5, tsDataType:INT64
 | [ChunkIndex] s5, offset=12880
 | [startTime: 0 endTime: 999 count: 1000 [minValue:5,maxValue:9995,firstValue:
5,lastValue:9995,sumValue:5000000.0]]
 15220| [TimeseriesIndex] of root.sg_1.d2.s6, tsDataType:INT64
 | [ChunkIndex] s6, offset=11045
 | [startTime: 0 endTime: 999 count: 1000 [minValue:6,maxValue:9996,firstValue:
6,lastValue:9996,sumValue:5001000.0]]
|||||||||||||||||||||
 15292| [IndexOfTimerseriesIndex Node] type=LEAF_MEASUREMENT
 | <s2, 14716>
 | <s6, 14932>
 | <endOffset, 15004>
 15324| [IndexOfTimerseriesIndex Node] type=LEAF_MEASUREMENT
 | <s2, 15004>
 | <s6, 15220>
 | <endOffset, 15292>
 15356| [TsFileMetadata]
 | [meta offset] 14715
 | [num of devices] 2
 | 2 key&TsMetadataIndex
 | [bloom filter bit vector byte array length] 32
 | [bloom filter bit vector byte array]
 | [bloom filter number of bits] 256
 | [bloom filter number of hash functions] 5
 15452| [TsFileMetadataSize] 96
 15456| [magic tail] TsFile
 15462| END of TsFile
---------------------------- IndexOfTimerseriesIndex Tree -----------------------------
 [MetadataIndex:LEAF_DEVICE]
 [root.sg_1.d1,15292]
 [MetadataIndex:LEAF_MEASUREMENT]
 [s2,14716]
 [s6,14932]

 [root.sg_1.d2,15324]
 [MetadataIndex:LEAF_MEASUREMENT]
 [s2,15004]
 [s6,15220]]
---------------------------------- TsFile Sketch End ----------------------------------

3.4 TsFileSequenceRead

You can also use example/tsfile/org/apache/iotdb/tsfile/TsFileSequenceRead to sequentially print a TsFile's content.

3.5 Vis Tool

Vis is a tool that visualizes the time layouts and cout aggregation of chunk data in TsFiles. You can use this tool to facilitate debugging, check the
distribution of data, etc. Please feel free to play around with it, and let us know your thoughts.

blocked URL

A single long narrow rectangle in the figure shows the visdata of a single chunk in a TsFile. Visdata contains [tsName, fileName, chunkId,
startTime, endTime, pointCountNum].
The position of a rectangle on the x-axis is defined by the startTime and endTime of the chunk data.
The position of a rectangle on the y-axis is defined simultaneously by

(a)showSpecific: the specific set of time series to be plotted;
(b) seqKey/unseqKey display policies: extract seqKey or unseqKey from statisfied keys under different display policies:

b-1) unseqKey identifies tsName and fileName, so chunk data with the same fileName and tsName but different chunkIds are
plotted on the same line.
b-2) seqKey identifies tsName, so chunk data with the same tsName but different fileNames and chunkIds are plotted on the
same line;

(c)isFileOrder: sort seqKey&unseqKey according to isFileOrder, true to sort seqKeys&unseqKeys by fileName priority, false to
sort seqKeys&unseqKeys by tsName priority. When multiple time series are displayed on a graph at the same time, this parameter can
provide users with these two observation perspectives.

3.5.1 How to run Vis

The source code contains two files: TsFileExtractVisdata.java and vis.m. TsFileExtractVisdata.java extracts, from input tsfiles, necessary
visualization information, which is what vis.m needs to plot figures.

Simply put, you first run TsFileExtractVisdata.java and then run vis.m.

Step 1: run TsFileExtractVisdata.java

TsFileExtractVisdata.java extracts visdata [tsName, fileName, chunkId, startTime, endTime, pointCountNum] from every chunk of the input TsFiles
and write them to the specified output path.

After building the server, the startup script of this tool will appear under the server\target\iotdb-server-{version}\tools\tsfileToolSet
directory.

Command:

For Windows:

.\print-tsfile-visdata.bat path1 seqIndicator1 path2 seqIndicator2 ... pathN seqIndicatorN outputPath

For Linux or MacOs:

./print-tsfile-visdata.sh path1 seqIndicator1 path2 seqIndicator2 ... pathN seqIndicatorN outputPath

Args: [path1 seqIndicator1 path2 seqIndicator2 ... pathN seqIndicatorN outputPath]

Details:

2N+1 args in total.
seqIndicator should be 'true' or 'false' (not case sensitive). 'true' means is the file is sequence, 'false' means the file is unsequence.
Path can be the full path of a tsfile or a directory path. If it is a directory path, make sure that all tsfiles in this directory have the same seqIndica
tor.
The input TsFiles should all be sealed. The handle of unsealed TsFile is left as future work when in need.

Step 2: run vis.m

vis.m load visdata generated by TsFileExtractVisdata, and then plot figures given the loaded visdata and two plot parameters: showSpecific and
isFileOrder.

https://user-images.githubusercontent.com/33376433/123763559-82074100-d8f6-11eb-9109-ead7e18f84b8.png

function [timeMap,countMap] = loadVisData(filePath,timestampUnit)
% Load visdata generated by TsFileExtractVisdata.
%
% filePath: the path of visdata.
% The format is [tsName,fileName,chunkId,startTime,endTime,pointCountNum].
% `tsName` and `fileName` are string, the others are long value.
% If the tsfile is unsequence file, `fileName` will contain "unseq" as an
% indicator, which is guaranteed by TsFileExtractVisdata.
%
% timestampUnit(not case sensitive):
% 'us' if the timestamp is microsecond, e.g., 1621993620816000
% 'ms' if it is millisecond, e.g., 1621993620816
% 's' if it is second, e.g., 1621993620
%
% timeMap: record the time range of every chunk.
% Key [tsName][fileName][chunkId] identifies the only chunk. Value is
% [startTime,endTime] of the chunk.
%
% countMap: record the point count number of every chunk. Key is the same
% as that of timeMap. Value is pointCountNum.

function draw(timeMap,countMap,showSpecific,isFileOrder)
% Plot figures given the loaded data and two plot parameters:
% `showSpecific` and `isFileOrder`.
%
% process: 1) traverse `keys(timeMap)` to get the position arrangements on
% the y axis dynamically, which is defined simultaneously by
% (a)`showSpecific`: traverse `keys(timeMap)`, filter out keys
% that don't statisfy `showSpecific`.
% (b) seqKey/unseqKey display policies: extract seqKey or unseqKey
% from statisfied keys under different display policies:
% b-1) unseqKey identifies tsName and fileName, so chunk data with the
% same fileName and tsName but different chunkIds are
% plotted on the same line.
% b-2) seqKey identifies tsName, so chunk data with the same tsName but
% different fileNames and chunkIds are plotted on the same
% line.
% (c)`isFileOrder`: sort seqKey&unseqKey according to `isFileOrder`,
% finally get the position arrangements on the y axis.
% 2) traverse `keys(timeMap)` again, get startTime&endTime from
% `treeMap` as positions on the x axis, combined with the
% positions on the y axis from the last step, finish plot.
%
% timeMap,countMap: generated by loadVisData function.
%
% showSpecific: the specific set of time series to be plotted.
% If showSpecific is empty{}, then all loaded time series
% will be plotted.
% Note: Wildcard matching is not supported now. In other
% words, showSpecific only support full time series path
% names.
%
% isFileOrder: true to sort seqKeys&unseqKeys by fileName priority, false
% to sort seqKeys&unseqKeys by tsName priority.

3.5.2 Examples

Example 1

Use the tsfiles written by IoTDBLargeDataIT.insertData with a little modification: add statement.execute("flush"); at the end of IoTDBLarge
DataIT.insertData.

Step 1: run TsFileExtractVisdata.java

.\print-tsfile-visdata.bat data\sequence true data\unsequence false D:\visdata1.csv

or equivalently:

.\print-tsfile-visdata.bat data\sequence\root.vehicle\0\0\1622743492580-1-0.tsfile true data\sequence\root.
vehicle\0\0\1622743505092-2-0.tsfile true data\sequence\root.vehicle\0\0\1622743505573-3-0.tsfile true
data\unsequence\root.vehicle\0\0\1622743505901-4-0.tsfile false D:\visdata1.csv

Step 2: run vis.m

clear all;close all;

% 1. load visdata generated by TsFileExtractVisdata
filePath = 'D:\visdata1.csv';
[timeMap,countMap] = loadVisData(filePath,'ms'); % mind the timestamp unit

% 2. plot figures given the loaded data and two plot parameters:
% `showSpecific` and `isFileOrder`
draw(timeMap,countMap,{},false)
title("draw(timeMap,countMap,\{\},false)")

draw(timeMap,countMap,{},true)
title("draw(timeMap,countMap,\{\},true)")

draw(timeMap,countMap,{'root.vehicle.d0.s0'},false)
title("draw(timeMap,countMap,{'root.vehicle.d0.s0'},false)")

draw(timeMap,countMap,{'root.vehicle.d0.s0','root.vehicle.d0.s1'},false)
title("draw(timeMap,countMap,{'root.vehicle.d0.s0','root.vehicle.d0.s1'},false)")

draw(timeMap,countMap,{'root.vehicle.d0.s0','root.vehicle.d0.s1'},true)
title("draw(timeMap,countMap,{'root.vehicle.d0.s0','root.vehicle.d0.s1'},true)")

Plot results:

blocked URL blocked URL blocked URL blocked URL blocked URL

Appendix

###

Big Endian

For Example, the int 0x8 will be stored as 00 00 00 08, replace by 08 00 00 00
String with Variable Length

The format is int size plus String literal. Size can be zero.
Size equals the number of bytes this string will take, and it may not equal to the length of the string.
For example "sensor_1" will be stored as 00 00 00 08 plus the encoding(ASCII) of "sensor_1".
Note that for the file signature "TsFile000001" (MAGIC STRING + Version Number), the size(12) and encoding(ASCII) is fixed so there
is no need to put the size before this string literal.

Compressing Type Hardcode

0: UNCOMPRESSED
1: SNAPPY
2: GZIP
3: LZO
4: SDT
5: PAA
6: PLA
7: LZ4

https://user-images.githubusercontent.com/33376433/123760377-5df63080-d8f3-11eb-8ca8-c93590f21bde.png
https://user-images.githubusercontent.com/33376433/123760402-63537b00-d8f3-11eb-9393-398c4204ccf1.png
https://user-images.githubusercontent.com/33376433/123760418-66e70200-d8f3-11eb-8701-437afd73ac4c.png
https://user-images.githubusercontent.com/33376433/123760424-69e1f280-d8f3-11eb-9f45-571496685a6e.png
https://user-images.githubusercontent.com/33376433/123760433-6cdce300-d8f3-11eb-8ecd-da04a475af41.png

	TsFile Format

