
daytrader - a more complex application
{scrollbar}

DayTrader is benchmark application built around the paradigm of an online stock trading system. Originally developed by IBM as the Trade Performance 
Benchmark Sample, DayTrader was donated to the Apache Geronimo community in 2005. This application allows users to login, view their portfolio, 
lookup stock quotes, and buy or sell stock shares. With the aid of a Web-based load driver such as Mercury LoadRunner, Rational Performance Tester, or 
Apache JMeter, the real-world workload provided by DayTrader can be used to measure and compare the performance of Java Platform, Enterprise 
Edition (Java EE) application servers offered by a variety of vendors.

In addition to the full workload, the application also contains a set of primitives used for functional and performance testing of various Java EE components 
and common design patterns.

This document is organized in the following sections:

3

Application Architecture
DayTrader is built on a core set of Java EE technologies that includes Java Servlets and JavaServer Pages (JSPs) for the presentation layer and Java 
database connectivity (JDBC), Java Message Service (JMS), Enterprise JavaBeans (EJBs) and Message-Driven Beans (MDBs) for the back-end business 
logic and persistence layer. The following diagram provides a high-level overview of the full workload application architecture.

Presentation Layer

The presentation layer consists of several Java Servlets and JSPs that loosely adhere to a Model-View-Controller (MVC) design pattern.  TradeAppServlet
is the primary controller servlet responsible for recieving incoming client requests, triggering the desired business logic, and forwarding responses to the 
appropriate JSP page. Additional servlets and JSPs are used to configure the DayTrader runtime options and manage the supporting database.

Business Logic and Persistence Layer



The business logic and persistence layer form the bulk of the DayTrader application. The  interface defines the core set of business TradeServices
operations available in the application, such as register, login, getHoldings, buy, completeOrder, logout, etc. DayTrader provides three different 
implementations of these services, corresponding to three commonly used JavaEE application design patterns. These implementations are discussed 
below. Users can switch between these implementations on the configuration page by changed the Runtime Mode.

Implementation Details

 TradeDirect
(Default)

 Servlet-to-JDBCPattern:
 DirectRuntime Mode:

The  class performs CRUD (create, read, update, and delete) operations directly against the supporting database using custom JDBC TradeDirect
code. Database connections, commits, and rollbacks are managed manually in the code. JTA user transactions are used to coordinate 2-phase 
commits.

TradeJDBC  Servlet-to-SessionBean-to-JDBCPattern:
 Session Direct Runtime Mode:

The  stateless session bean serves as a wrapper for TradeDirect. The session bean assumes control of all transaction management TradeJDBC
while TradeDirect remains responsible for handling the JDBC operations and connections. This implementation reflects the most commonly used 
JavaEE application design pattern.

TradeBean  Servlet-to-SessionBean-to-EntityBeanPattern:
 EJBRuntime Mode:

The  stateless session bean uses Container Managed Persistence (CMP) entity beans to represent the business objects. The state of TradeBean
these objects is completely managed by the application servers EJB container.

Another subtle component of this layer involves the Java Messaging Service (JMS). JMS is used within DayTrader for two specific purposes, 
asynchronously processing buy/sell orders, and publishing quote price updates. The following table discusses these operations in further detail.

Operation Details

Asynchrouno
us Order 
Processing

When a buy or sell operation is performed, an order request is placed on the TradeBroker JMS queue using a client connection. The TradeBrokerMDB 
consumes messages on this queue and completes the buy or sell operation.

Quote Price 
Updates

As stocks are traded, the associated quote prices are updated in the database and published to a JMS topic. The TradeStreamerMDB subscribes to 
these updates consuming the price updates messages, but does nothing more with them. The TradeStreamer JavaEE client that is bundled with 
DayTrader can be started to view the quote prices updates in real time.

Business Objects and Relationships

The following diagram represents the database schema and associated business objects. Container managed relationships (CMRs) are also depicted in 
the diagram.

Create diagram and add here

Business Operations (as defined in TradeServices)

As previously mentioned, all of the primary business operations provided by DayTrader are defined in the TradeServices interface. These operations are 
discussed further in the following table.

TradeServices 
Operation

Details

login  

logout  

buy  

sell  

getMarketSummary  

queueOrder  

completeOrder  

cancelOrder  

orderCompleted  

getOrders  

getClosedOrders  

createQuote  

getQuote  



getAllQuotes  

updateQuotePriceVolume  

getHoldings  

getHolding  

getAccountData  

getAccountProfileData  

updateAccountProfile  

register  

resetTrade  

User Inerface (UI) Operations

The DayTrader JSP/Servlet-based web client provides a basic set of operations that one would expect to find in any stock trading and portfolio 
management application. These high level user operations trigger specific business operations (defined above) within the business logic and persistence 
layers to perform the desired task. The following table summarizes the business tasks performed by each user operation/action.

Client (UI) 
Operation

Flow of Business 
Operations

Register  

Login  

View Account  

View Account Profile  

Update Account Profile  

View Portfolio  

Sell Holding  

View Quotes  

Buy Stock  

Logout  

Getting the source
Daytrader is available in the Apache's subversion repository, run the following command to checkout the source files into the  directory.daytrader-2.0

svn co  <daytrader_home>http://svn.apache.org/repos/asf/geronimo/daytrader/trunk/

<daytrader_home> could be any directory dedicated to hold daytrader-2.0.

This process may take several minutes depending on the machine and network connectivity speed.

Building Daytrader
Once all the sources get checked out the next step is to build Daytrader. Daytrader requires Maven 2 for building the binaries.

From the  directory run the following command.<daytrader_home>

mvn install

This process will take a couple of minutes. The binaries will be generated in the corresponding  directory for each of the modules in the  target modules
directory.

Configuring Daytrader
By default Daytrader requires a database to be created using the embedded Derby database that is shipped with Geronimo. Typically, the provided 
deployment plan files are configured to create such database (DaytraderDatabase) on Apache Derby during deployment. However, scripts are provided 
within the  directory to create this database manually. Note that at this point this step , you can still <daytrader_home>/bin/dbscripts/derby optional
create the required database after deploying Daytrader and using the  link from the application's (Re)-create DayTrader Database Tables and Indexes Co

 page.nfiguration Utility

http://svn.apache.org/repos/asf/geronimo/daytrader/trunk/


Independently on whether you use the command line scripts or the web based option, you will need the tables created before getting to the #Populating 
 section.sample data

The puspose of this section is to show you how to use the provided scripts to create the required  so, if needed, you can adapt them to DaytraderDatabase
your specific configuration environment. Additional scripts for different databases are also provided.

Start Geronimo by running the following command: 
 <geronimo_home>/bin/geronimo start

The provided database creation script requires setting the  environment variable. On the same window you start Geronimo GERONIMO_HOME
run the following command: 

 set GERONIMO_HOME=<geronimo_home>
Change directory to the directory containing the database creation scripts. 

 cd <daytrader_home>/bin/dbscripts/derby
Open  script and verify/modify the Derby version to match the one being used by Geronimo ( e.g. <geronimo_home>/repositorycreateDerbyDB
/org/apache/derby/derby/10.2.2.0 ). Once you verified the versions match run the script. 

 createDerbyDB
You should see a scree similar to the one illustrated below. solid D:\daytrader-2.0\bin\dbscripts\derby>createDerbyDB.bat "Invoking IJ command 
line tool to create the database and tables...please wait" ij version 10.2.2.0 ij> ij> ERROR 42Y55: 'DROP TABLE' cannot be performed on 
'HOLDINGEJB' because it does not exist. ij> ERROR 42Y55: 'DROP TABLE' cannot be performed on 'ACCOUNTPROFILEEJB' because it does 
not exist. ij> ERROR 42Y55: 'DROP TABLE' cannot be performed on 'QUOTEEJB' because it does not exist. ij> ERROR 42Y55: 'DROP TABLE' 
cannot be performed on 'KEYGENEJB' because it does not exist. ij> ERROR 42Y55: 'DROP TABLE' cannot be performed on 'ACCOUNTEJB' 
because it does not exist. ij> ERROR 42Y55: 'DROP TABLE' cannot be performed on 'ORDEREJB' because it does not exist. ij> 0 rows inserted
/updated/deleted ij> 0 rows inserted/updated/deleted ij> 0 rows inserted/updated/deleted ij> 0 rows inserted/updated/deleted ij> 0 rows inserted
/updated/deleted ij> 0 rows inserted/updated/deleted ij> 0 rows inserted/updated/deleted ij> 0 rows inserted/updated/deleted ij> 0 rows inserted
/updated/deleted ij> 0 rows inserted/updated/deleted ij> 0 rows inserted/updated/deleted ij> 0 rows inserted/updated/deleted ij> 0 rows inserted
/updated/deleted ij> 0 rows inserted/updated/deleted ij> 0 rows inserted/updated/deleted ij> 0 rows inserted/updated/deleted ij> 0 rows inserted
/updated/deleted ij> ij> Table creation complete
You can verify the database was created by pointing your browser to the Geronimo Administration Console and clicking on .DB Manager
The last step in this configuration is to update the deployment plan. Edit the  deployment plan located daytrader-g-2.0-SNAPSHOT-plan.xml
in the  directory and replace  with .<daytrader_home>\plans ge-activemq-rar/1.2-beta/rar ge-activemq-rar/1.2/rar

You are now ready to deploy the application.

Deploying Daytrader
So far we have retrieved the source file, built, configured, created a database and updated the deployment plan. Now it is time to install the Daytrader 
application in Geronimo.

There are basically two ways to deploy an application in Geronimo, either using the Geronimo Administration Console or the command line based deployer 
tool. For this example we will be using the command line based option.

From the  directory run the following command:<geronimo_home>/bin

deploy --user system --password manager deploy <daytrader_home>\modules\ear\target\daytrader-ear-2.0-SNAPSHOT.ear 
<daytrader_home>\plans\daytrader-g-2.0-SNAPSHOT-plan.xml

The first  is the script that calls the deployer tool, then we pass the user name and password. The second  is the actual command option deploy deploy
for deploying the  EAR using the  deployment plan specifically. In daytrader-ear-2.0-SNAPSHOT.ear daytrader-g-2.0-SNAPSHOT-plan.xml
your own application you could call this plan  and place it in the  directory within you EAR file and you will not geronimo-application.xml META-INF
need to expressly specify the deployment plan from the command line.

You should see a deployment confirmation screen similar to the one shown below.

solid D:\geronimo-tomcat6-javaee5-2.1\bin>deploy --user system --password manager deploy \daytrader-2.0\modules\ear\target\daytrader-ear-2.0-
SNAPSHOT.ear \daytrader-2.0\plans\daytrader-g-2.0-SNAPSHOT-plan.xml Using GERONIMO_BASE: D:\geronimo-tomcat6-javaee5-2.1 Using 
GERONIMO_HOME: D:\geronimo-tomcat6-javaee5-2.1 Using GERONIMO_TMPDIR: D:\geronimo-tomcat6-javaee5-2.1\var\temp Using JRE_HOME: C:
\Java\jdk1.5.0_06\jre Deployed geronimo/daytrader/2.0-SNAPSHOT/car `-> web.war @ http://localhost:8080/daytrader `-> dt-ejb.jar `-> geronimo
/daytrader-wsapp-client/2.0-SNAPSHOT/car `-> geronimo/daytrader-streamer-client/2.0-SNAPSHOT/car `-> TradeDataSource `-> TradeJMS

Daytrader is now ready for testing.

Populating sample data
With the application deployed and started (starts by default when you deploy it) the next step before using Daytrader is to populate sample data to the 
database we created before. The following steps illustrate how.

Access the application pointing your browser to  http://localhost:8080/daytrader

http://localhost:8080/daytrader


Click on the  tab.Configuration
Click on  to generate the sample data, this will open a new window showing the progress.(Re)-populate DayTrader Database
The initial population size consists of 200 accounts and 400 stock quotes. These values can be updated via the "Configure DayTrader run-time 
parameters" link on the "Configuration" tab.

Running Daytrader
Daytrader can be run in number of configurations and also provides a suite of web primitives to ease testing. Each of these primitives singularly test key 
operations in the enterprise Java programming model. Some of these can be configured to run repeateadly based on the configuration settings that we will 
cover later on. The following sections describe more in detail these primitives test suite.

Web Container ping suite

The following table describe the Web container related set of primitives. Those primitives that can be set to run multiple times are .highlighted

Primitive Description

PingHtml PingHtml is the most basic operation providing access to a simple "Hello World" page of static HTML.

Explicit GC Invoke Garbage Collection on AppServer. Reports heap statistics after the GC has completed.

PingServlet PingServlet tests fundamental dynamic HTML creation through server side servlet processing.

PingServlet
Writer

PingServletWriter extends PingServlet by using a PrintWriter for formatted output vs. the output stream used by PingServlet.

PingServlet
2Include

PingServlet2Include tests response inclusion. Servlet 1 includes the response of Servlet 2.



PingServlet2
Servlet

PingServlet2Servlet tests request dispatching. Servlet 1, the controller, creates a new JavaBean object forwards the request with the JavaBean added to 
Servlet 2. Servlet 2 obtains access to the JavaBean through the Servlet request object and provides dynamic HTML output based on the JavaBean data.

PingJSP PingJSP tests a direct call to JavaServer Page providing server-side dynamic HTML through JSP scripting.

PingJSPEL PingJSPEL tests a direct call to JavaServer Page providing server-side dynamic HTML through JSP scripting and the usage of the new JSP 2.0 
Expression Language.

PingServlet2
JSP

PingServlet2JSP tests a commonly used design pattern, where a request is issued to servlet providing server side control processing. The servlet creates 
a JavaBean object with dynamically set attributes and forwards the bean to the JSP through a RequestDispatcher The JSP obtains access to the 
JavaBean and provides formatted display with dynamic HTML output based on the JavaBean data.

PingHTTPS
ession1

PingHTTPSession1 -  tests fundamental HTTP session function by creating a unique session ID for each individual user. The ID is stored in SessionID
the users session and is accessed and displayed on each user request.

PingHTTPS
ession2

PingHTTPSession2  further extends the previous test by invalidating the HTTP Session on every 5th user access. This session create/destroy
results in testing HTTPSession create and destroy.

PingHTTPS
ession3

PingHTTPSession3  tests the servers ability to manage and persist large HTTPSession data objects. The servlet creates a large session object
large custom java object. The class contains multiple data fields and results in 2048 bytes of data. This large session object is retrieved and stored to the 
session on each user request.

PingJDBCR
ead

PingJDBCRead tests fundamental servlet to JDBC access to a database performing a single-row read using a prepared SQL statement.

PingJDBC
Write

PingJDBCRead tests fundamental servlet to JDBC access to a database performing a single-row write using a prepared SQL statement.

PingServlet
2JNDI

PingServlet2JNDI tests the fundamental J2EE operation of a servlet allocating a JNDI context and performing a JNDI lookup of a JDBC DataSource.

EJB Container ping suite

The following table describe the EJB container related set of primitives. Those primitives that can be set to run multiple times are .highlighted

Primitive Description

PingServlet2S
essionEJB

PingServlet2SessionEJB tests key function of a servlet call to a stateless SessionEJB. The SessionEJB performs a simple calculation and returns the 
result.

PingServlet2E
ntityEJBLocal 
PingServlet2E
ntityEJBRemo
te

PingServlet2EntityEJB tests key function of a servlet call to an EJB 2.0 Container Managed Entity. In this test the EJB entity represents a single row in 
the database table. The  uses the EJB Local interface while the  uses the Remote EJB interface. Local version Remote version
(Note: PingServlet2EntityEJBLocal will fail in a multi-tier setup where the Trade Web and EJB apps are separated.)

PingServlet2S
ession2Entity

This tests the full servlet to Session EJB to Entity EJB path to retrieve a single row from the database.

PingServlet2Se
ssion2 
EntityCollection

This test extends the previous EJB Entity test by calling a Session EJB which uses a finder method on the Entity that returns a collection of Entity 
objects. Each object is displayed by the servlet

PingServlet2S
ession2CMRO
ne2One

This test drives an Entity EJB to get another Entity EJB's data through an EJB 2.0 CMR One to One relationship

PingServlet2S
ession2CMRO
ne2Many

This test drives an Entity EJB to get another Entity EJB's data through an EJB 2.0 CMR One to Many relationship

PingServlet2S
ession2JDBC

This tests the full servlet to Session EJB to JDBC path to retrieve a single row from the database.

PingServlet2Se
ssion2 
JDBCCollection

This test extends the previous JDBC test by calling a Session EJB to JDBC path which returns multiple rows from the database.

PingServlet2M
DBQueue

PingServlet2MDBQueue drives messages to a Queue based Message Driven EJB (MDB).Each request to the servlet posts a message to the Queue. 
The MDB receives the message asynchronously and prints message delivery statistics on each 100th message. 
Note: Not intended for performance testing.

PingServlet2M
DBTopic

PingServlet2MDBTopic drives messages to a Topic based Publish/Subscribe Message Driven EJB (MDB).Each request to the servlet posts a message 
to the Topic. The TradeStreamMDB receives the message asynchronously and prints message delivery statistics on each 100th message. Other 
subscribers to the Topic will also receive the messages. 
Note: Not intended for performance testing.

PingServlet2T
woPhase

PingServlet2TwoPhase drives a Session EJB which invokes an Entity EJB with findByPrimaryKey (DB Access) followed by posting a message to an 
MDB through a JMS Queue (Message access). These operations are wrapped in a global 2-phase transaction and commit.

Configure DayTrader run-time

So now you know what set of primitives are available and which of those can be set to run multiple times. The following table describes what parameters 
are available from the Daytrader  to set the runtime parameters.Configuration Utilities



Parameter Option Description

Run-Time 
Mode

EJB 
Direct 
SessionDir
ect 
JPA

Run Time Mode determines server implementation of the TradeServices to use in the DayTrader application Enterprise Java Beans 
including Session, Entity and Message beans or Direct mode which uses direct database and JMS access.

Order-
Processing 
Mode

Synchrono
us 
Asynchron
ous_2-
Phase

Order Processing Mode determines the mode for completing stock purchase and sell operations. Synchronous mode completes the order 
immediately. Asychronous_2-Phase performs a 2-phase commit over the EJB Entity/DB and MDB/JMS transactions.

Access Mode Standard 
WebServic
es

Access Mode determines the protocol used by the DayTrader Web application to access server side services. The Standard mode uses 
the default Java RMI protocol. The Web Services mode uses the Axis implementation of Web Services including SOAP, WSDL and UDDI.

Scenario 
Workload Mix

Standard 
High-
Volume

This setting determines the runtime workload mix of DayTrader operations when driving the benchmark through TradeScenarioServlet.

WebInterface JSP 
JSP-
Images

This setting determines the Web interface technology used, JSPs or JSPs with static images and GIFs.

Miscellaneous Settings

DayTrader Max Users 
Trade Max Quotes

By default the DayTrader database is populated with 50 users (uid:0 - uid:49) and 100 quotes (s:0 - s:99).

Primitive Iteration By default the DayTrader primitives are execute one operation per web request. Change this value to repeat operations multiple times per web 
request.

Publish Quote 
Updates

Publish quote price changes to a JMS topic. Needed for running the .#Streamer application client

Enable long run 
support

Enable long run support by disabling the show all orders query performed on the Account page.

Enable operation 
trace 
Enable full trace

Enable DayTrader processing trace messages.

Running Primitives

So far we saw what primitives are available, which of those can be set to run multiple iterations and how to configure the application runtime parameters.

Point your browser to http://localhost:8080/daytrader
Click on .Configuration
Click on .Configure DayTrader run-time parameters
Select  from .EJB Run-Time Mode
Seclect  from .JSP-Images WebInterface
Set  to .Primitive Iteration 100
Click on .Update Config
Click on .Primitives
Click on .PingServlet2EntityEJBLocal

With these settings, every time you hit  or refresh the page that primitive will get executed  times. When doing PingServlet2EntityEJBLocal 100
performance analysis, being able to "play" with these parameters is very valuable. This helps you track down execution times of these very specific 
functions. When used combined with a load simulation tool, the different configurations will assist you with the fine tuning of the server based on the 
specific needs of your environment.

Gone trading !!!

We just saw how to run singular functions/operations tests via the available primitives. The very same settings you configured for running those primitives 
also affect the GUI for trading simulation.

Point your browser to http://localhost:8080/daytrader
Click on .Trading & Portfolios
Accept the default user and password and click on .Login
You should now be able to begin trading!

http://localhost:8080/daytrader
http://localhost:8080/daytrader


Additional details for configuring and running Daytrader can be found in the application  available by pointing your web browser to FAQ http://localhost:8080
/daytrader

Back to square one

After you performed some tests and want to run a new set from scratch you will need to reset the runtime configuration and transaction data from the 
database.

Point your browser to http://localhost:8080/daytrader
Click on .Configuration
Click on .Reset DayTrader (to be done before each run)

http://localhost:8080/daytrader
http://localhost:8080/daytrader
http://localhost:8080/daytrader


Click on .(Re)-populate DayTrader Database

These simple steps are all you need to start a new set of tests on Daytrader however, you may still want to restart the server depending on the type of 
tests you are running.

Launching the application clients
DayTrader provides two J2EE application clients, the DayTrader Streamer and a web services application. The Streamer application client uses a JMS 
topic to subscribe to quote price updates as stocks are bought and sold. These updates are tracked and used to determine if database collisions occur 
while updating the quote prices in the database. The web services application client simply provides a thick client for accessing DayTrader services using a 
web services interface.

Streamer application client

In order for the quote price updates to get published to the JMS topic, the "Publish Quote Updates" flag on the configuration page must be enabled.

Point your browser to http://localhost:8080/daytrader
Click on .Configuration
Click on .Configure DayTrader run-time parameters
Make sure you select the  checkbox.Publish Quote Updates

To start the Streamer application client run the following command.

<geronimo_home>/bin/java -jar client.jar geronimo/daytrader-streamer-client/2.0-SNAPSHOT/car

Web Services application client

<geronimo_home>/bin/java -jar client.jar geronimo/daytrader-wsapp-client/2.0-SNAPSHOT/car

http://localhost:8080/daytrader

	daytrader - a more complex application

