
deploy
cxf-tools Tools and commands geronimo

The script is used for installing, uninstalling, reinstalling, starting and stopping applications and modules and for installing and uninstalling deploy
configurations (for example some configuration specific deployment plans, security realms, database connection pools etc.)

Usage
This command has the following syntax:

deploy <general_options> <command> <command_options>

where specify common options that apply to all commands and control how the application behaves, is a command name <general_options> <command>
that specifies the action to be performed, and are options unique to the command specified.<command_options>

The command can also be started by using the java -jar command:deploy

java -Djava.endorsed.dirs=lib/endorsed -jar bin/deployer.jar <general_options> <command> <command_options>

General options

This section lists all the available general options for the Geronimo deployer tool.

--uri <identifier>
Where is a Universal Resource Identifier (URI) that specifies how the deployer is to contact the server. If this flag is not specified, the <identifier>
deployer will attempt to contact the server using the standard port on localhost. The identifier must have the following form:

deployer:geronimo:jmx:rmi:///jndi/rmi://host:port/JMXConnector

where is replaced with the host name or TCP/IP address of the system where the server is running and <port> is replaced with the port <host>
number where the server is listening. If unspecified, localhost and the default port will be used.

--host <host>
Where is the host name of the server you are trying to deploy that application or resource. This option allows you to deploy resources and <host>
applications to a remote server. This parameter is optional and defaults to localhost defined as RemoteDeployHostname=localhost in
<Geronimo_home>/var/config/config-substitutions.properties. Change localhost to the server's ip address if you want remote-deployment enabled
on it.

--port <port>
Where is the port of the remote server you are trying to deploy that application or resource. This parameter is optional and defaults to port <port>
1099.

--driver <driver_path>
Where is the path to the driver JAR if you want to use this tool with a server other than Geronimo. Currently, manifest Class-Path <driver_path>
entries in that JAR are ignored.

--user <username>
Where is a user name authorized to be an administrator on the server. If the command requires authorization, you must use this <username>
option.

--password <password>
Where is a the password required to authenticate the user name. If this flag is not specified, the deployer will attempt to perform the <password>
command with no password, but if that fails, it will prompt you to enter a password.

--secure
Use secure channel to communicate with a JMX server, see for details.Security

--syserr <select>
Where can be either true or false. If this flag is unspecified. false is assumed. Specify true when you want errors to be logged to the <select>
syserr device.

--verbose <select>
Where can be either true or false. If this flag is unspecified. false is assumed. Specify true when you need more messages to determine <select>
the cause of an error.

Back to top

https://cwiki.apache.org/confluence/display/GMOxDOC30/cxf-tools
https://cwiki.apache.org/confluence/display/GMOxDOC30/cxf-tools
https://cwiki.apache.org/confluence/display/GMOxDOC30/Tools+and+commands
https://cwiki.apache.org/confluence/display/GMOxDOC30/Tools+and+commands
https://cwiki.apache.org/confluence/display/GMOxDOC30/geronimo
https://cwiki.apache.org/confluence/display/GMOxDOC30/geronimo

Security

Starting with Geronimo 2.1.2, the deployer tool can use a secure channel (SSL/TLS) to communicate with the JMX server to perform the given actions. To
enable secure communication just add the option. Depending on your configuration you might also need to specify some Java security properties --secure
to configure the JVM to use the right keystores and passwords. For example, on a default Geronimo installation you might need to set the following (all in
one line):

export JAVA_OPTS="-Djavax.net.ssl.trustStore=<geronimo_home>/var/security/keystores/geronimo-default -Djavax.
net.ssl.trustStorePassword=secret"

Once that property is set, you can execute the following command (just as an example):

<GERONIMO_HOME>/bin/deploy -u system -p manager --secure list-modules

Back to top

Sub-commands

The available sub-commands for the Geronimo deployer tool are listed below:

Common commands
Deploy
Login
Redeploy
Start
Stop
Undeploy

Other commands
Distribute
Encrypt
Install-library
List-modules
List-targets
UnlockKeystore

Geronimo Plugins
Install-plugin
Search-plugins

Bundle commands
Install-bundle
Uninstall-bundle

Additionally, you can type for further details on a given command, the syntax is as follows:help

deploy help <command>

Back to top

Deploy

Use the command to add and start a new module. The deploy command has the following syntax:deploy

deploy <general_options> deploy <module> <deployment_plan>

The <module> specifies the application file name and location. The <deployment_plan> specifies the file name and location of the XML with the
deployment plan. Sometimes the application module already has included in the package a deployment plan or the application is so simple that does not
require any deployment plan, in these cases this parameter can be omited.

A module file can be one of the following:

J2EE Enterprise Application Archive (EAR) file
J2EE Web Application Archive (WAR) file
J2EE Enterprise JavaBean Archive (JAR) file
J2EE Java Resource Archive (RAR) file

The secure JMX server is not running by default. Please see for more information.Securing RMI port of Geronimo

https://cwiki.apache.org/confluence/display/GMOxDOC30/Securing+RMI+port+of+Geronimo

If the server is not currently running at the time of deploying the application, the module will be marked to start next time the server is started.

The most common <general_options> would be --user and --password. The --inPlace option allows you point to and deploy an application directly from a
directory external to Geornimo without the need for even packaging the application. In other words, you can have an application in Geronimo but running
that application may be anywhere else on the file system.

To use this option you should type:

deploy <general_options> deploy --inPlace <APP_HOME>

Where <APP_HOME> indicates the home directory where you have your application (exploded).

You can also deploy applications if Geronimo is not running by using the --offline option, the syntax for this command would be:

deploy <general_options> --offline deploy <module>

Off course, you can also combine --offline and --inPlace

deploy <general_options> --offline deploy --inPlace <APP_HOME>

Back to top

Login

Use the command to save the username and password for the current connection to the file in the current user's home login .geronimo-deployer
directory. Future connections to the same server will try to use this saved authentication information instead of prompting where possible.

This information will be saved separately per connection URL, so you can specify --url or --host and/or --port on the command line to save a login to a
different server.

The command has the following syntax:login

deploy --user <user_name> --password <password> login

So, next time you run a different command that originally required user name and password, you can run the command directly, for example:

deploy list-modules

Similarly, you don't have to specify or re-enter the user name and password when you shut down the server using the command.shutdown

Back to top

Redeploy

Use the command to stop, replace and restart a module that has been deployed before. The redeploy command has the following syntax:redeploy

deploy <general_options> redeploy -targets target<module> <deployment_plan>

Just like the , the redeploy command accepts the following modules file types:deploy command

J2EE Enterprise Application Archive (EAR) file
J2EE Web Application Archive (WAR) file
J2EE Enterprise JavaBean Archive (JAR) file
J2EE Java Resource Archive (RAR) file

Please note that the --inPlace option cannot be used when deploying an application to a remote server.

Even when the login information is not saved in clear text, it is not secure either. If you want to save the authentication securely, you should
change the .geronimo-deployer file in your home directory so that nobody else can read or write it.

https://cwiki.apache.org/confluence/display/GMOxDOC30/shutdown

Typically, both a module and a plan are specified. If the module contains a plan or if a default plan can be used, the plan can be omitted. However, if a
plan is specified in this case, it overrides the other plans. If the plan references a server component already deployed in the server's environment, the
module is omitted.

Use option only for clustering redeployment. For clustering redeployment you can find the target with deploy command. Copy the one --targets list-targets
with the name as and use it as a target variable.MasterConfigurationStore
Back to top

Start

Use the command to start a previously deployed module. The start command has the following syntax:start

deploy <general_options> start <moduleIDs>

Where <moduleIDs> is a list of one or more modules (configID) separated by blank space. The module identification (or ConfigID) is defined at deployment
time in the respective deployment plan for each module previously deployed.

Back to top

Stop

Use the command to stop a running module. The stop command has the following syntax:stop

deploy <general_options> stop <moduleIDs>

Where <moduleIDs> is a list of one or more modules (configID) separated by blank space. The module identification (or ConfigID) is defined at deployment
time in the respective deployment plan for each module previously deployed.

Back to top

Undeploy

Use the command to stop and remove a module (running or not) and its deployment information from the server. The undeploy command has undeploy
the following syntax:

deploy <general_options> undeploy <moduleIDs>

Where <moduleIDs> is a list of one or more modules (configID) separated by blank space. The module identification (or ConfigID) is defined at deployment
time in the respective deployment plan for each module previously deployed.

This command has the same ability as with to uninstall applications when the server is not running, this command has the following syntax:deploy

deploy <general_options> --offline undeploy <moduleID>

Back to top

Distribute

Use the command to add a new module to the server. This command does not start the module nor mark it to be started in the future. The distribute
distribute command has the following syntax:

deploy <general_options> distribute <module> <deployment_plan>

Just like with the deploy command, <module> specifies the application file name and location. The <deployment_plan> specifies the file name and location
of the XML with the deployment plan. Sometimes the application module already has included in the package a deployment plan or the application is so
simple that does not require any deployment plan, in these cases this parameter can be omitted.

A module file can be one of the following:

J2EE Enterprise Application Archive (EAR) file
J2EE Web Application Archive (WAR) file
J2EE Enterprise JavaBean Archive (JAR) file
J2EE Java Resource Archive (RAR) file

Back to top

Encrypt

Use the command to generate an encrypted string. This command takes use of org.apache.geronimo.util.EncryptionManager and has the encrypt
following syntax:

<geronimo_home>/bin/deploy <general_options> encrypt <string>

Where <general_options> are common options that apply to all commands, <string> specifies a string to get encrypted.

Currently password strings are plain text in deployment plans, such as datasource or JMS deployment plans within an EAR. It might pose a security
problem to store password strings as plain text even though the deployment plans are only used during the deployment process, and not at runtime.
Starting from Geronimo 2.1.5, users can encrypt passwords using the encrypt command and paste the encrypted strings into deployment plans as
password.

Examples:

Use this syntax to encrypt string on an active server so that the encryption settings of that server will be usedpassw0rd

deploy --user myadmin --password mypassword encrypt passw0rd

Online encryption result:

......
String to encrypt: passw0rd
Online encryption result:
{Simple}rO0ABXNyABlqYXZheC5jcnlwdG8uU2VhbGVkT2JqZWN0PjY9psO3VHACAARbAA1lbmNv
ZGVkUGFyYW1zdAACW0JbABBlbmNyeXB0ZWRDb250ZW50cQB+AAFMAAlwYXJhbXNBbGd0ABJMamF2YS9s
YW5nL1N0cmluZztMAAdzZWFsQWxncQB+AAJ4cHB1cgACW0Ks8xf4BghU4AIAAHhwAAAAEG2NoqXONCcU
GqfK0reVCpVwdAADQUVT

Use this syntax to encrypt string passw0rd offline

deploy --offline encrypt passw0rd

Offline encryption result:

......
String to encrypt: passw0rd
Offline encryption result:
{Simple}rO0ABXNyABlqYXZheC5jcnlwdG8uU2VhbGVkT2JqZWN0PjY9psO3VHACAARbAA1lbmNv
ZGVkUGFyYW1zdAACW0JbABBlbmNyeXB0ZWRDb250ZW50cQB+AAFMAAlwYXJhbXNBbGd0ABJMamF2YS9s
YW5nL1N0cmluZztMAAdzZWFsQWxncQB+AAJ4cHB1cgACW0Ks8xf4BghU4AIAAHhwAAAAEG2NoqXONCcU
GqfK0reVCpVwdAADQUVT

Note: Online encryption needs a running server to connect to and will use the encryption settings of that server, such as an encryption key, to do the
encryption. As a result, the encrypted password usually can only be used for that particular server. Offline encryption uses the default encryption settings,
and the encrypted password can be used by all servers. Offline encryption is thus less secure than online encryption.

Back to top

Install-library

Use the command to install a library into server's repository. The install-library command has the following syntax:install-library

deploy <general_options> install-library --groupId groupName <libraryFile>

Use the option to specify a non-default group id for the library. Otherwise, the library file will be installed with the group id named .--groupId default

Examples:

deploy -u system -p manager install-library mylib-1.0.jar

That command will install the mylib-1.0.jar at <geronimo_home>/repository/default/mylib/1.0/mylib-1.0.jar

deploy -u system -p manager install-library --groupId mygroup mylib-1.0.jar

That command will install the mylib-1.0.jar at <geronimo_home>/repository/mygroup/mylib/1.0/mylib-1.0.jar

Back to top

List-modules

Use the command to list all available modules on the server, note that for running this command the server must be running. The list-list-modules
modules command has the following syntax:

deploy <general_options> list-modules [--all|--started|--stopped]

--all : is used by default when no other option is specified. It will list all the available modules.
--started : this option will list only the modules that are running.
--stopped : this option will list only the modules that are not running.

Back to top

List-targets

Use the command to lists the targets known to the server you have connected to. The list-targets command has the following syntax:list-targets

deploy <general_options> list-targets

In the case of Geronimo, each configuration store is a separate target. Geronimo does not yet support clusters as targets.

Back to top

UnlockKeystore

Use the command to unlock a keystore and private keys. The unlockKeystore command has the following syntax:unlockKeystore

<geronimo_home>/bin/deploy <general_options> unlockKeystore <keyStoreName> <keyAlias1> <keyAlias2>

Where <keyStoreName> specifies a locked keystore to get unlocked, <keyAlias1> and <keyAlias2> are optionally used to specify one or more locked
private keys in the keystore to get unlocked.

Note that before you can use the unlockKeystore command, you need to ensure that the following lines are added to <geronimo_home>/var/config/config-
substitutions.properties:

<keyStoreName>=<keyStoreEncryptedPassword>
<keyAlias1>=<keyAlias1EncryptedPassword>
<keyAlias2>=<keyAlias1EncryptedPassword>
...

Where

<keyStoreName> is the name of the keystore.
<keyStoreEncryptedPassword> is the encrypted password for the keystore, which can be generated by using the command. When you encrypt
copy and paste the generated encrypted password to <geronimo_home>/var/config/config-substitutions.properties, there should be no space in
the encrypted password string.
<keyAlias1>, <keyAlias2> are the names of the private keys in the keystore.
<keyAlias1EncryptedPassword>, <keyAlias2EncryptedPassword> are the encrypted passwords for the private keys, which can also be generated
by using the encrypt command.

Alternatively, you can create a key file to contain the passwords of the keystore and its private keys. Use org.apache.geronimo.
 property to specify the key file. See for more detailed keyStoreTrustStorePasswordFile Creating your keystorefile for SSL authentication

instructions.

Examples:

https://cwiki.apache.org/confluence/display/GMOxDOC30/Creating+your+keystorefile+for+SSL+authentication

Use this syntax to unlock the keystore whose name is mykeystore

deploy --user myadmin --password mypassword unlockKeystore mykeystore

Use this syntax to unlock the keystore whose name is mykeystore and the private key whose alias is key1

deploy --user myadmin --password mypassword unlockKeystore mykeystore key1

Back to top

Install-plugin

Use the command to install a Geronimo plugin previously exported from a Geronimo server or downloaded from a repository. A Geronimo install-plugin
plugin can be an application, a configuration such data sources and drivers or a combination. The install-plugin command has the following syntax:

deploy install-plugin <plugin_file>

Back to top

Search-plugins

Use the command to list all the Geronimo plugins available in a Maven repository. The search-plugins command has the following syntax:search-plugins

deploy search-plugins <maven_repository_URL>

Back to top

install-bundle command and options

The command installs and records an OSGi bundle file in the server, so that the installed bundle can be automatically started even install-bundle
after you cleaned the cache directory of the OSGi framework. Use below syntax:

deploy install-bundle --groupId --startLevel {norender} {norender}">generalOptions groupId number [--start] deploy install-bundle --generalOptions
groupId --startLevel {norender} {norender}groupId number [--start]

where

${renderedContent}
${renderedContent}

${renderedContent}
${renderedContent}

${renderedContent}
${renderedContent}

${renderedContent}
${renderedContent}

In the server repository, all modules are stored in a maven-style structure directory. After an OSGi bundle is installed, its maven artifact name is groupId
./Bundle-SymbolicName/Bundle-Version/jar

Back to top

">Uninstall-bundle command and options

The command stops and removes an OSGi bundle and its deployment information from the server, and uses this syntax:uninstall-bundle

deploy uninstall-bundle ">generalOptions bundleId deploy uninstall-bundle generalOptions bundleId

where

${renderedContent}
${renderedContent}
${renderedContent}
${renderedContent}

Note: The command does not supportuninstall-bundle

Unknown macro: {norender}

--offline

option.
Back to top

Unknown macro: {norender}

	deploy

