
Operational Logging - Status Update - Test Specification

Test Specification

Overview
Operational Test Cases
Performance Test Case

Overview

The Test Specification will detail a 1:1 mapping from specification to test case.
Each test specification in the list will include:

Functional description of what is being tested.
Input(actions and/or data)
Expected outputs:

... that will cause failure

... that can safely be ignored.

These details will then be used as the basis of each test that is created allowing for better maintainability in the test code.

Operational Test Cases

Broker Test Suite
Broker Startup

testBrokerStartupConfiguration
testBrokerStartupCustomLog4j
testBrokerStartupDefaultLog4j
testBrokerStartupStartup
testBrokerStartupListeningTCPDefault
testBrokerStartupListeningTCPSSL
testBrokerStartupReady

Broker Shutdown
testBrokerShutdownListeningTCPDefault
testBrokerShutdownListeningTCPSSL
testBrokerShutdownStopped

Management Console Test Suite
Management Startup

testManagementStartupEnabled
testManagementStartupDisabled
testManagementStartupRMIRegistry
testManagementStartupRMIRegistryCustom
testManagementStartupRMIConnectorServer
testManagementStartupRMIConnectorServerCustom
testManagementStartupSSLKeystore
testManagementStartupReady

Management Shutdown
testManagementShutdownRMIRegistry
testManagementShutdownRMIConnectorServer
testManagementShutdownStopped

Virtualhost Test Cases
testVirtualhostCreation
testVirtualhostClosure

MessageStore Tests
testMessageStoreCreation
testMessageStoreStoreLocation
testMessageStoreClose
testMessageStoreRecoveryStart
testMessageStoreQueueRecoveryShowRecovered
testMessageStoreQueueRecoveryCountEmpty
testMessageStoreQueueRecoveryCountPlural
testMessageStoreQueueRecoveryCountSingular
testMessageStoreQueueRecoveryComplete
testMessageStoreRecoveryComplete

Connection Test Suite
testConnectionOpen
testConnectionClose
testConnectionCloseViaManagement

Channel
testChannelCreate
testChannelConsumerFlowStopped
testChannelConsumerFlowStarted
testChannelCloseViaConnectionClose
testChannelCloseViaChannelClose
testChannelCloseViaError

1.
2.
3.

Queue
testQueueCreatePersistent
testQueueCreatePersistentAutoDelete
testCreateQueuePersistentPriority
testCreateQueuePersistentAutoDeletePriority
testQueueCreateTransient
testQueueCreateTransientAutoDelete
testCreateQueueTransientPriority
testCreateQueueTransientAutoDeletePriority
testCreateQueueTransientViaManagementConsole
testQueueDelete
testQueueAutoDelete
testQueueDeleteViaManagementConsole

Exchange
testExchangeCreateDurable
testExchangeCreate
testExchangeDelete

Binding
testBindingCreate
testBindingCreateWithArguments
testBindingCreateViaManagementConsole
testBindingDelete
testBindingDeleteViaManagementConsole

Subscription
testSubscriptionCreate
testSubscriptionCreateDurable
testSubscriptionCreateWithArguments
testSubscriptionCreateDurableWithArguments
testSubscriptionCreateQueueBrowser
testSubscriptionClose

Test Structure
Risks

This section enumerates the various operational tests described in the identified from the . This text should form the Test Plan Functional Specification
basis of the Technical Documentation for the specified test class.

Broker Test Suite

The Broker test suite validates that the follow log messages as specified in the .Functional Specification

BRK-1001 : Startup : Version: <Version> Build: <Build>
BRK-1002 : Starting : Listening on <Transport> port <Port>
BRK-1003 : Shuting down : <Transport> port <Port>
BRK-1004 : Ready
BRK-1005 : Stopped
BRK-1006 : Using configuration : <path>
BRK-1007 : Using logging configuration : <path>

These messages should only occur during startup. The tests need to verify the order of messages. In the case of the BRK-1002 and BRK-1003 the
respective ports should only be available between the two log messages.

Broker Startup

testBrokerStartupConfiguration

Description: On startup the broker must report the active configuration file. The logging system must output this so that we can know what configuration is
being used for this broker instance.
Input:
The value of specified on the command line.-c
Output:

<date> MESSAGE BRK-1006 : Using configuration : <config file>

Constraints:
This the first log message.MUST BE BRK
Validation Steps:

This is first log message.BRK
The ID is correctBRK
The config file is the full path to the file specified on the commandline.

testBrokerStartupCustomLog4j

https://cwiki.apache.org/confluence/display/qpid/Operational+Logging+-+Status+Update+-+Test+Plan
https://cwiki.apache.org/confluence/display/qpid/Operational+Logging+-+Status+Update+-+Functional+Specification
https://cwiki.apache.org/confluence/display/qpid/Operational+Logging+-+Status+Update+-+Functional+Specification

1.
2.
3.

1.
2.
3.

1.
2.

1.
2.
3.

Description:
On startup the broker must report correctly report the log4j file in use. This is important as it can help diagnose why logging messages are not being
reported. The broker must also be capable of correctly recognising the command line property to specify the custom logging configuration.

 Input:
The value of specified on the command line.-l
Output:

<date> MESSAGE BRK-1007 : Using logging configuration : <log4j file>

Validation Steps:

The ID is correctBRK
This should occur before the BRK-1001 : Startup message
The log4j file is the full path to the file specified on the commandline.

testBrokerStartupDefaultLog4j

Description:
On startup the broker must report correctly report the log4j file in use. This is important as it can help diagnose why logging messages are not being
reported.

 Input:
No custom value should be provided on the command line so that the default value is correctly reported.-l
Output:

<date> MESSAGE BRK-1007 : Using logging configuration : <$QPID_HOME>/etc/log4j.xml

Validation Steps:

The ID is correctBRK
This occurs before the startup message.BRK-1001
The log4j file is the full path to the file specified on the commandline.

testBrokerStartupStartup

Description: On startup the broker reports the broker version number and svn build revision. This information is retrieved from the resource 'qpidversion.
properties' which is located via the classloader.

 The 'qpidversion.properties' file located on the classpath.Input:
Output:

<date> MESSAGE BRK-1001 : Startup : qpid Version: 0.6 Build: 767150

Validation Steps:

The ID is correctBRK
This occurs before any listening messages are reported.BRK-1002

testBrokerStartupListeningTCPDefault

Description:
On startup the broker may listen on a number of ports and protocols. Each of these must be reported as they are made available.

 Input:
The default configuration with no SSL
Output:

<date> MESSAGE BRK-1002 : Starting : Listening on TCP port 5672

Constraints:
Additional broker configuration will occur between the Startup(BRK-1001) and Starting(BRK-1002) messages depending on what VirtualHosts are
configured.
Validation Steps:

The ID is correctBRK
This occurs after the startup messageBRK-1001
Using the default configuration a single will be printed showing values TCP / 5672BRK-1002

testBrokerStartupListeningTCPSSL

1.
2.
3.

a.
b.

1.
2.
3.

1.
2.
3.
4.

1.
2.

Description:
On startup the broker may listen on a number of ports and protocols. Each of these must be reported as they are made available.

 Input:
The default configuration with SSL enabled
Output:

<date> MESSAGE BRK-1002 : Starting : Listening on TCP port 5672
<date> MESSAGE BRK-1002 : Starting : Listening on TCP/SSL port 8672

Constraints:
Additional broker configuration will occur between the Startup(BRK-1001) and Starting(BRK-1002) messages depending on what VirtualHosts are
configured.
Validation Steps:

The ID is correctBRK
This occurs after the startup messageBRK-1001
With SSL enabled in the configuration two will be printed (order is not specified)BRK-1002

One showing values TCP / 5672
One showing values TCP/SSL / 5672

testBrokerStartupReady

Description:
The final message the broker will print when it has performed all initialisation and listener startups will be to log the Ready messageBRK-1004

 Input:
No input, all successful broker startups will show messages.BRK-1004
Output:

2009-07-09 15:50:20 +0100 MESSAGE BRK-1004 : Ready

Validation Steps:

The ID is correctBRK
This occurs after the startup messageBRK-1001
This must be the last message the broker prints after startup. Currently, if there is no further interaction with the broker then there should be no
more logging.

Broker Shutdown

testBrokerShutdownListeningTCPDefault

Description:
On startup the broker may listen on a number of ports and protocols. Each of these must then report a shutting down message as they stop listening.

 Input:
The default configuration with no SSL
Output:

<date> MESSAGE BRK-1003 : Shutting down : TCP port 5672

Validation Steps:

The ID is correctBRK
Only TCP is reported with the default configuration with no SSL.
The default port is correct
The port is not accessible after this message

testBrokerShutdownListeningTCPSSL

Description:
On startup the broker may listen on a number of ports and protocols. Each of these must then report a shutting down message as they stop listening.

 Input:
The default configuration with SSL enabled
Output:

<date> MESSAGE BRK-1003 : Shutting down : TCP port 5672
<date> MESSAGE BRK-1003 : Shutting down : TCP/SSL port 8672

Validation Steps:

The ID is correctBRK

2.
3.
4.

1.
2.

1.
2.

1.

With SSL enabled in the configuration two will be printed (order is not specified)BRK-1003
The default port is correct
The port is not accessible after this message

testBrokerShutdownStopped

Description:
 Input:

No input, all clean broker shutdowns will show messages.BRK-1005
Output:

<date> MESSAGE BRK-1005 : Stopped

Constraints:
This is the message the broker will log.LAST
Validation Steps:

The ID is correctBRK
This is the last message the broker will log.

Management Console Test Suite

The Management Console test suite validates that the follow log messages as specified in the .Functional Specification

This suite of tests validate that the management console messages occur correctly and according to the following format:

MNG-1001 : Startup
MNG-1002 : Starting : <service> : Listening on port <Port>
MNG-1003 : Shutting down : <service> : port <Port>
MNG-1004 : Ready
MNG-1005 : Stopped
MNG-1006 : Using SSL Keystore : <path>

Management Startup

testManagementStartupEnabled

Description:
Using the startup configuration validate that the management startup message is logged correctly.

 Input:
Standard configuration with management enabled
Output:

<date> MNG-1001 : Startup

Constraints:
This is the message logged by FIRST MNG
Validation Steps:

The ID is correctBRK
This is the message logged by FIRST MNG

testManagementStartupDisabled

Description:
Verify that when management is disabled in the configuration file the startup message is not logged.

 Input:
Standard configuration with management disabled
Output:

 messagesNO MNG
Validation Steps:

Validate that no messages are produced.MNG

testManagementStartupRMIRegistry

Description:
Using the default configuration validate that the RMI Registry socket is correctly reported as being opened

 Input:
The default configuration file
Output:

https://cwiki.apache.org/confluence/display/qpid/Operational+Logging+-+Status+Update+-+Functional+Specification

1.
2.

1.
2.

1.
2.

1.
2.

<date> MESSAGE MNG-1002 : Starting : RMI Registry : Listening on port 8999

Constraints:
The RMI ConnectorServer and Registry log messages do not have a prescribed order
Validation Steps:

The ID is correctMNG
The specified port is the correct '8999'

testManagementStartupRMIRegistryCustom

Description:
Using the default configuration validate that the RMI Registry socket is correctly reported when overridden via the command line.

 Input:
The default configuration file and a custom -m value
Output:

<date> MESSAGE MNG-1002 : Starting : RMI Registgry : Listening on port <port>

Constraints:
The RMI ConnectorServer and Registry log messages do not have a prescribed order
Validation Steps:

The ID is correctMNG
The specified port is as specified on the command line.

testManagementStartupRMIConnectorServer

Description:
Using the default configuration validate that the RMI ConnectorServer socket is correctly reported as being opened

 Input:
The default configuration file
Output:

<date> MESSAGE MNG-1002 : Starting : RMI ConnectorServer : Listening on port 9099

Constraints:
The RMI ConnectorServer and Registry log messages do not have a prescribed order
Validation Steps:

The ID is correctMNG
The specified port is the correct '9099'

testManagementStartupRMIConnectorServerCustom

Description:
Using the default configuration validate that the RMI Registry socket is correctly reported when overridden via the command line.

 Input:
The default configuration file and a custom -m value
Output:

<date> MESSAGE MNG-1002 : Starting : RMI ConnectorServer : Listening on port <port>

Constraints:
The RMI ConnectorServer and Registry log messages do not have a prescribed order
Validation Steps:

The ID is correctMNG
The specified port is as specified on the commandline.

testManagementStartupSSLKeystore

Description:
Using the default configuration with SSL enabled for the management port the SSL Keystore path should be reported via MNG-1006

 Input:
Management SSL enabled default configuration.
Output:

1.
2.

1.
2.
3.
4.

1.
2.

1.
2.

1.

<date> MESSAGE MNG-1006 : Using SSL Keystore : test_resources/ssl/keystore.jks

Validation Steps:

The ID is correctMNG
The keystore path is as specified in the configuration

testManagementStartupReady

Description:
Using the default configuration the final stage of management startup is to report a Ready message.MNG-1004

 Input:
Default broker configuration.
Output:

<date> MESSAGE MNG-1004 : Ready

Validation Steps:

The ID is correctMNG
There has been a messageMNG-1001
There has been at least one Listening messageMNG-1002
No further messages are produced as part of the startup process, i.e. before broker use.MNG

Management Shutdown

testManagementShutdownRMIRegistry

Description:
Using the default configuration the management RMI Registry will start and so on shutdown it will log that it is shutting down.

 Input:
The default configuration file.
Output:

<date> MNG-1003 : Shutting down : RMI Registry : Listening on port 8999

Validation Steps:

The ID is correctMNG
The message has been logged.MNG-1004

testManagementShutdownRMIConnectorServer

Description:
Using the default configuration the management RMI ConnectorServer will start and so on shutdown it will log that it is shutting down.

 Input:
The default configuration file.
Output:

<date> MNG-1003 : Shutting down : RMI ConnectorServer : Listening on port 9099

Validation Steps:

The ID is correctMNG
The message has been logged.MNG-1004

testManagementShutdownStopped

Description:
On final shutdown the management console will report that it has stopped. All logging must be complete before this message is logged.MNG

 Input:
The default configuration file.
Output:

<date> MNG-1005 : Stopped

Validation Steps:

1.
2.
3.
4.

1.
2.
3.

1.
2.

The ID is correctMNG
The message has been logged.MNG-1004
For each message that was logged a is also logged before this message.MNG-1002 MNG-1003
This is the last message reported.MNG

Virtualhost Test Cases

The virtualhost test suite validates that the follow log messages as specified in the .Functional Specification

This suite of tests validate that the management console messages occur correctly and according to the following format:

VHT-1001 : Created : <name>
VHT-1002 : Work directory : <path>
VHT-1003 : Closed

testVirtualhostCreation

Description:
Testing can be performed using the default configuration. The goal is to validate that for each virtualhost defined in the configuration file a VHT-1001
Created message is provided.

 Input:
The default configuration file
Output:

<date> VHT-1001 : Created : <name>

Validation Steps:

The ID is correctVHT
A is printed for each virtualhost defined in the configuration file.VHT-1001
This must be the message for the specified virtualhost.first

testVirtualhostClosure

Description:
Testing can be performed using the default configuration. During broker shutdown a Closed message will be printed for each of the configured VHT-1002
virtualhosts. For every virtualhost that was started a close must be logged. After the close message has been printed no further logging will be performed
by this virtualhost.

 Input:
The default configuration file
Output:

<date> VHT-1002 : Closed

Validation Steps:

The ID is correctVHT
This is the last message for the given virtualhost.VHT

MessageStore Tests

The MessageStore test suite validates that the follow log messages as specified in the .Functional Specification

This suite of tests validate that the MessageStore messages occur correctly and according to the following format:

MST-1001 : Created : <name>
MST-1002 : Store location : <path>
MST-1003 : Closed
MST-1004 : Recovery Start [: <queue.name>]
MST-1005 : Recovered <count> messages for queue <queue.name>
MST-1006 : Recovery Complete [: <queue.name>]

testMessageStoreCreation

Description:
During Virtualhost startup a MessageStore will be created. The first message that must be logged is the MessageStore creation.MST MST-1001

 Input:
Default configuration
Output:

https://cwiki.apache.org/confluence/display/qpid/Operational+Logging+-+Status+Update+-+Functional+Specification
https://cwiki.apache.org/confluence/display/qpid/Operational+Logging+-+Status+Update+-+Functional+Specification

1.
2.

1.
2.

1.
2.

1.
2.

1.

<date> MST-1001 : Created : <name>

Validation Steps:

The ID is correctMST
The <name> is the correct MessageStore type as specified in the Default configuration

testMessageStoreStoreLocation

Description:
Persistent MessageStores will require space on disk to persist the data. This value will be logged on startup after the MessageStore has been created.

 Input:
Default configuration
Output:

<date> MST-1002 : Store location : <path>

Validation Steps:

The ID is correctMST
This must occur after MST-1001

testMessageStoreClose

Description:
During shutdown the MessageStore will also cleanly close. When this has completed a closed message will be logged. No further messages MST-1003
from this MessageStore will be logged after this message

 Input:
Default configuration
Output:

<date> MST-1003 : Closed

Validation Steps:

The ID is correctMST
This is the log message from this MessageStorelast

testMessageStoreRecoveryStart

Description:
Persistent message stores may have state on disk that they must recover during startup. As the MessageStore starts up it will report that it is about to start
the recovery process by logging . This message will always be logged for persistent MessageStores. If there is no data to recover then there will MST-1004
be no subsequent recovery messages.

 Input:
Default persistent configuration
Output:

<date> MST-1004 : Recovery Start

Validation Steps:

The ID is correctMST
The MessageStore must have first logged a creation event.

testMessageStoreQueueRecoveryShowRecovered

Description:
A persistent MessageStore may have data to recover from disk. The message store will use to report the start of recovery for a specific queue MST-1004
that it has previously persisted.

 Input:
Default persistent configuration
Output:

<date> MST-1004 : Recovery Start : <queue.name>

Validation Steps:

1.
2.

1.
2.

3.
4.
5.
6.
7.

1.
2.

3.
4.
5.
6.
7.

1.
2.

3.
4.
5.
6.
7.

The ID is correctMST
This must occur after the recovery start has been logged.MST-1004

testMessageStoreQueueRecoveryCountEmpty

Description:
A persistent queue must be persisted so that on recovery it can be restored independently of any messages that may be stored on it. This test verifies that
the MessageStore will log that it has recovered 0 messages for persistent queues that do not have any messages.
Input:

Default persistent configuration
Persistent queue with no messages enqueued
Output:

<date> MST-1005 : Recovered 0 messages for queue <queue.name>

Validation Steps:
The ID is correctMST
This must occur after the queue recovery start has been logged.MST-1004
The count is 0
'messages' is correctly printed
The queue.name is non-empty

testMessageStoreQueueRecoveryCountPlural

Description:
On recovery all the persistent messages that are stored on disk must be returned to the queue. will report the number of messages that have MST-1005
been recovered from disk.
Input:

Default persistent configuration
Persistent queue with multiple messages enqueued
Output:

<date> MST-1005 : Recovered <count> messages for queue <queue.name>

Validation Steps:
The ID is correctMST
This must occur after the queue recovery start has been logged.MST-1004
The count is > 1
'messages' is correctly printed
The queue.name is non-empty

testMessageStoreQueueRecoveryCountSingular

Description:
On recovery all the persistent messages that are stored on disk must be returned to the queue. will report the number of messages that have MST-1005
been recovered from disk.
Input:

Default persistent configuration
A persistent queue with a single message enqueued.
Output:

<date> MST-1005 : Recovered 1 message for queue <queue.name>

Validation Steps:
The ID is correctMST
This must occur after the queue recovery start has been logged.MST-1004
The count is 1
'message' is correctly printed
The queue.name is non-empty

testMessageStoreQueueRecoveryComplete

Description:
After the queue has been recovered the store will log that recovery has been completed. The MessageStore must not report further status about the
recovery of this queue after this message. In addition every queue recovery start message must be matched with a recovery MST-1004 MST-1006
complete.

 Input:
Default persistent configuration
Output:

1.
2.
3.
4.

1.
2.
3.

1.
2.

3.
4.

1.
2.

3.
4.
5.

<date> MST-1006 : Recovery Complete : <queue.name>

Validation Steps:

The ID is correctMST
This must occur after the queue recovery start has been logged.MST-1004
The queue.name is non-empty
The queue.name correlates with a previous recovery start

testMessageStoreRecoveryComplete

Description:
Once all persistent queues have been recovered and the MessageStore has completed all recovery it must logged that the recovery process has
completed.

 Input:
Default persistent configuration
Output:

<date> MST-1006 : Recovery Complete

Validation Steps:

The ID is correctMST
This is the message from the MessageStore during startup.last
This must be proceeded by a Recovery Start.MST-1004

Connection Test Suite

The Connection test suite validates that the follow log messages as specified in the .Functional Specification

This suite of tests validate that the Connection messages occur correctly and according to the following format:

CON-1001 : Open : Client ID <id> : Protocol Version : <version>
CON-1002 : Close

testConnectionOpen

Description:
When a new connection is made to the broker this must be logged.
Input:

Running Broker
Connecting client
Output:

<date> CON-1001 : Open : Client ID <id> : Protocol Version : <version>

Validation Steps:
The ID is correctCON
This is the message for that Connectionfirst CON

testConnectionClose

Description:
When a connected client closes the connection this will be logged as a message.CON-1002
Input:

Running Broker
Connected Client
Output:

<date> CON-1002 : Close

Validation Steps:
The ID is correctCON
This must be the last message for the ConnectionCON
It must be preceded by a for this ConnectionCON-1001

https://cwiki.apache.org/confluence/display/qpid/Operational+Logging+-+Status+Update+-+Functional+Specification

1.
2.
3.

4.
5.
6.

1.
2.

3.
4.

1.
2.
3.

4.

1.
2.

3.

testConnectionCloseViaManagement

Description:
When a connected client has its connection closed via the Management Console this will be logged as a message.CON-1002
Input:

Running Broker
Connected Client
Connection is closed via Management Console
Output:

<date> CON-1002 : Close

Validation Steps:
The ID is correctCON
This must be the last message for the ConnectionCON
It must be preceded by a for this ConnectionCON-1001

Channel

The Channel test suite validates that the follow log messages as specified in the .Functional Specification

This suite of tests validate that the Channel messages occur correctly and according to the following format:

CHN-1001 : Create : Prefetch <count>
CHN-1002 : Flow <value>
CHN-1003 : Close

testChannelCreate

Description:
When a new Channel (JMS Session) is created this will be logged as a Create message. The messages will contain the prefetch details about CHN-1001
this new Channel.
Input:

Running Broker
New JMS Session/Channel creation
Output:

<date> CHN-1001 : Create : Prefetch <count>

Validation Steps:
The ID is correctCHN
The prefetch value matches that defined by the requesting client.

testChannelConsumerFlowStopped

Description:
The Java Broker implements consumer flow control for all ack modes except No-Ack. When the client fills the prefetch then a Flow Stopped CHN-1002
messasge will be issued in the log.
Input:

Running broker
Message Producer to put more data on the queue than the client's prefetch
Client that ensures that its prefetch becomes full
Output:

<date> CHN-1002 : Flow Stopped

Validation Steps:
The ID is correctCHN

testChannelConsumerFlowStarted

Description:
The Java Broker implements consumer flow control for all ack modes except No-Ack. When the client fills the prefetch. As soon as the client starts to
consume the messages (and ack them) the broker will resume the flow issuing a Flow Started message to the logCHN-1002
Input:

Running broker
Message Producer to put more data on the queue than the client's prefetch

https://cwiki.apache.org/confluence/display/qpid/Operational+Logging+-+Status+Update+-+Functional+Specification

3.
4.

5.

1.
2.
3.

4.
5.

1.
2.
3.

4.
5.

1.
2.
3.

4.
5.

Client that ensures that its prefetch becomes full
The client then consumes from the prefetch to remove the flow status.
Output:

<date> CHN-1002 : Flow Started

Validation Steps:
The ID is correctMST

testChannelCloseViaConnectionClose

Description:
When the client gracefully closes the Connection then a Close message will be issued. This must be the last message logged for this Channel.CHN-1003
Input:

Running Broker
Connected Client
Client then requests that the Connection is closed
Output:

<date> CHN-1003 : Close

Validation Steps:
The ID is correctMST
This must be the last message logged for this Channel.

testChannelCloseViaChannelClose

Description:
When the client requests that the Channel (JMS Session) be closed then a Close message will be issued. This must be the last message CHN-1003
logged for this Channel.
Input:

Running Broker
Connected Client
Client then requests that the Channel is closed
Output:

<date> CHN-1003 : Close

Validation Steps:
The ID is correctMST
This must be the last message logged for this Channel.

testChannelCloseViaError

Description:
If a Connection becomes interrupted and then a Close message will still be issued to signify that the Channel has been closed. This must be CHN-1003
the last message logged for this Channel.
Input:

Running Broker
Connected Client
Client then requests that the Channel is closed
Output:

<date> CHN-1003 : Close

Validation Steps:
The ID is correctMST
This must be the last message logged for this Channel.

Queue

The Queue test suite validates that the follow log messages as specified in the .Functional Specification

This suite of tests validate that the Queue messages occur correctly and according to the following format:

https://cwiki.apache.org/confluence/display/qpid/Operational+Logging+-+Status+Update+-+Functional+Specification

1.
2.

3.
4.
5.

1.
2.

3.
4.
5.
6.

1.
2.

3.
4.
5.
6.

1.
2.

QUE-1001 : Create : [AutoDelete] [Durable|Transient] [Priority:<levels>] [Owner:<name>]
QUE-1002 : Deleted

testQueueCreatePersistent

Description:
When a simple persistent queue is created then a create message is expected to be logged.QUE-1001
Input:

Running broker
Persistent Queue is created from a client
Output:

<date> QUE-1001 : Create : Persistent Owner:<name>

Validation Steps:
The ID is correctQUE
The Persistent tag is present in the message
The Owner is as expected

testQueueCreatePersistentAutoDelete

Description:
When an autodelete persistent queue is created then a create message is expected to be logged.QUE-1001
Input:

Running broker
AutoDelete Persistent Queue is created from a client
Output:

<date> QUE-1001 : Create : AutoDelete Persistent Owner:<name>

Validation Steps:
The ID is correctQUE
The Persistent tag is present in the message
The Owner is as expected
The AutoDelete tag is present in the message

testCreateQueuePersistentPriority

Description:
When a persistent queue is created with a priority level then a create message is expected to be logged.QUE-1001
Input:

Running broker
Persistent Queue is created from a client with a priority level
Output:

<date> QUE-1001 : Create : Persistent Priority:<levels> Owner:<name>

Validation Steps:
The ID is correctQUE
The Persistent tag is present in the message
The Owner is as expected
The Priority level is correctly set

testCreateQueuePersistentAutoDeletePriority

Description:
When an autodelete persistent queue is created with a priority level then a create message is expected to be logged.QUE-1001
Input:

Running broker
An AutoDelete Persistent Queue is created from a client with priority
Output:

<date> QUE-1001 : Create : AutoDelete Persistent Priority:<levels> Owner:<name>

2.

3.
4.
5.
6.
7.

1.
2.

3.
4.
5.

1.
2.

3.
4.
5.
6.

1.
2.

3.
4.
5.
6.

1.
2.

Validation Steps:
The ID is correctQUE
The Persistent tag is present in the message
The Owner is as expected
The AutoDelete tag is present in the message
The Priority level is correctly set

testQueueCreateTransient

Description:
When a simple transient queue is created then a create message is expected to be logged.QUE-1001
Input:

Running broker
Transient Queue is created from a client
Output:

<date> QUE-1001 : Create : Transient Owner:<name>

Validation Steps:
The ID is correctQUE
The Transient tag is present in the message
The Owner is as expected

testQueueCreateTransientAutoDelete

Description:
When an autodelete transient queue is created then a create message is expected to be logged.QUE-1001
Input:

Running broker
AutoDelete Transient Queue is created from a client
Output:

<date> QUE-1001 : Create : AutoDelete Transient Owner:<name>

Validation Steps:
The ID is correctQUE
The Transient tag is present in the message
The Owner is as expected
The AutoDelete tag is present in the message

testCreateQueueTransientPriority

Description:
When a transient queue is created with a priority level then a create message is expected to be logged.QUE-1001
Input:

Running broker
Transient Queue is created from a client with a priority level
Output:

<date> QUE-1001 : Create : Transient Priority:<levels> Owner:<name>

Validation Steps:
The ID is correctQUE
The Transient tag is present in the message
The Owner is as expected
The Priority level is correctly set

testCreateQueueTransientAutoDeletePriority

Description:
When an autodelete transient queue is created with a priority level then a create message is expected to be logged.QUE-1001
Input:

Running broker
An autodelete Transient Queue is created from a client with a priority level
Output:

<date> QUE-1001 : Create : AutoDelete Transient Priority:<levels> Owner:<name>

2.

3.
4.
5.
6.
7.

1.
2.
3.

4.
5.

1.
2.
3.

4.

1.
2.

3.

1.
2.
3.
4.

5.

Validation Steps:
The ID is correctQUE
The Transient tag is present in the message
The Owner is as expected
The AutoDelete tag is present in the message
The Priority level is correctly set

testCreateQueueTransientViaManagementConsole

Description:
Queue creation is possible from the Management Console. When a queue is created in this way then a create message is expected to be QUE-1001
logged.
Input:

Running broker
Connected Management Console
Queue Created via Management Console
Output:

<date> QUE-1001 : Create : Transient Owner:<name>

Validation Steps:
The ID is correctQUE
The correct tags are present in the message based on the create options

testQueueDelete

Description:
An explict QueueDelete request must result in a Deleted message being logged. This can be done via an explict AMQP QueueDelete method.QUE-1002
Input:

Running Broker
Queue created on the broker with no subscribers
Client requests the queue be deleted via a QueueDelete
Output:

<date> QUE-1002 : Deleted

Validation Steps:
The ID is correctQUE

testQueueAutoDelete

Description:
When a Client requests a temporary queue then this is represented in the Java Broker as an autodelete exclusive queue. When the client disconnects the
queue will automatically deleted. This can be seen as a Deleted message will be logged.QUE-1002
Input:

Running Broker
Client creates a temporary queue then disconnects
Output:

<date> QUE-1002 : Deleted

Validation Steps:
The ID is correctQUE

testQueueDeleteViaManagementConsole

Description:
The ManagementConsole can be used to delete a queue. When this is done a Deleted message must be logged.QUE-1002
Input:

Running Broker
Queue created on the broker with no subscribers
Management Console connected
Queue is deleted via Management Console
Output:

<date> QUE-1002 : Deleted

Validation Steps:

5.

1.
2.

3.
4.

1.
2.

3.

1.
2.
3.

4.
5.

The ID is correctQUE

Exchange

The Exchange test suite validates that the follow log messages as specified in the .Functional Specification

This suite of tests validate that the Exchange messages occur correctly and according to the following format:

EXH-1001 : Create : [Durable] Type:<value> Name:<value>
EXH-1002 : Deleted

testExchangeCreateDurable

Description:
When a durable exchange is created an message is logged with the Durable tag. This will be the first message from this exchange.EXH-1001
Input:

Running broker
Client requests a durable exchange be created.
Output:

<date> EXH-1001 : Create : Durable Type:<value> Name:<value>

Validation Steps:
The ID is correctEXH
The Durable tag is present in the message

testExchangeCreate

Description:
When an exchange is created an message is logged. This will be the first message from this exchange.EXH-1001
Input:

Running broker
Client requests an exchange be created.
Output:

<date> EXH-1001 : Create : Type:<value> Name:<value>

Validation Steps:
The ID is correctEXH

testExchangeDelete

Description:
An Exchange can be deleted through an AMQP ExchangeDelete method. When this is successful an Delete message will be logged. This will EXH-1002
be the last message from this exchange.
Input:

Running broker
A new Exchange has been created
Client requests that the new exchange be deleted.
Output:

<date> EXH-1002 : Deleted

Validation Steps:
The ID is correctEXH
There is a corresponding Create message logged.EXH-1001

Binding

The Binding test suite validates that the follow log messages as specified in the .Functional Specification

This suite of tests validate that the Binding messages occur correctly and according to the following format:

BND-1001 : Create [: Arguments : <key=value>]
BND-1002 : Deleted

https://cwiki.apache.org/confluence/display/qpid/Operational+Logging+-+Status+Update+-+Functional+Specification
https://cwiki.apache.org/confluence/display/qpid/Operational+Logging+-+Status+Update+-+Functional+Specification

1.
2.

3.
4.

1.
2.

3.
4.
5.

1.
2.
3.

4.
5.

1.
2.

3.
4.
5.

testBindingCreate

Description:
The binding of a Queue and an Exchange is done via a Binding. When this Binding is created a Create message will be logged.BND-1001
Input:

Running Broker
New Client requests that a Queue is bound to a new exchange.
Output:

<date> BND-1001 : Create

Validation Steps:
The ID is correctBND
This will be the message for the given bindingfirst

testBindingCreateWithArguments

Description:
A Binding can be made with a set of arguments. When this occurs we logged the key,value pairs as part of the Binding log message. When the subscriber
with a JMS Selector consumes from an exclusive queue such as a topic. The binding is made with the JMS Selector as an argument.
Input:

Running Broker
Java Client consumes from a topic with a JMS selector.
Output:

<date> BND-1001 : Create : Arguments : <key=value>

Validation Steps:
The ID is correctBND
The JMS Selector argument is present in the message
This will be the message for the given bindingfirst

testBindingCreateViaManagementConsole

Description:
The binding of a Queue and an Exchange is done via a Binding. When this Binding is created via the Management Console a Create message BND-1001
will be logged.
Input:

Running Broker
Connected Management Console
Use Management Console to perform binding
Output:

<date> BND-1001 : Create

Validation Steps:
The ID is correctBND
This will be the message for the given bindingfirst

testBindingDelete

Description:
Bindings can be deleted so that a queue can be rebound with a different set of values.
Input:

Running Broker
AMQP UnBind Request is made
Output:

<date> BND-1002 : Deleted

Validation Steps:
The ID is correctBND
There must have been a Create message first.BND-1001
This will be the message for the given bindinglast

testBindingDeleteViaManagementConsole

1.
2.
3.

4.
5.
6.

1.
2.

3.

1.
2.

3.
4.

1.
2.

Description:
Bindings can be deleted so that a queue can be rebound with a different set of values. This can be performed via the Management Console
Input:

Running Broker
Management Console connected
Management Console is used to perform unbind.
Output:

<date> BND-1002 : Deleted

Validation Steps:
The ID is correctBND
There must have been a Create message first.BND-1001
This will be the message for the given bindinglast

Subscription

The Subscription test suite validates that the follow log messages as specified in the .Functional Specification

This suite of tests validate that the Subscription messages occur correctly and according to the following format:

SUB-1001 : Create : [Durable] [Arguments : <key=value>]
SUB-1002 : Close

testSubscriptionCreate

Description:
When a Subscription is created it will be logged. This test validates that Subscribing to a transient queue is correctly logged.
Input:

Running Broker
Create a new Subscription to a transient queue/topic.
Output:

<date> SUB-1001 : Create

Validation Steps:
The ID is correctSUB

testSubscriptionCreateDurable

Description:
The creation of a Durable Subscription, such as a JMS DurableTopicSubscriber will result in an extra Durable tag being included in the Create log message
Input:

Running Broker
Creation of a JMS DurableTopicSubiber
Output:

<date> SUB-1001 : Create : Durable

Validation Steps:
The ID is correctSUB
The Durable tag is present in the message

testSubscriptionCreateWithArguments

Description:
The creation of a Subscriber with a JMS Selector will result in the Argument field being populated. These argument key/value pairs are then shown in the
log message.
Input:

Running Broker
Subscriber created with a JMS Selector.
Output:

https://cwiki.apache.org/confluence/display/qpid/Operational+Logging+-+Status+Update+-+Functional+Specification

2.

3.
4.

1.
2.

3.
4.
5.

1.
2.

3.
4.
5.

1.
2.
3.

4.
5.
6.

1.

2.

<date> SUB-1001 : Create : Arguments : <key=value>

Validation Steps:
The ID is correctSUB
Argument tag is present in the message

testSubscriptionCreateDurableWithArguments

Description:
The final combination of Create messages involves the creation of a Durable Subscription that also contains a set of Arguments, such as those SUB-1001
provided via a JMS Selector.
Input:

Running Broker
Java Client creates a Durable Subscription with Selector
Output:

<date> SUB-1001 : Create : Durable Arguments : <key=value>

Validation Steps:
The ID is correctSUB
The tag Durable is present in the message
The Arguments are present in the message

testSubscriptionCreateQueueBrowser

Description:
The creation of a QueueBrowser will provides a number arguments and so should form part of the Create message. SUB-1001
Input:

Running Broker
Java Client creates a QueueBroweser
Output:

<date> SUB-1001 : Create : Arguments : <key=value>

Validation Steps:
The ID is correctSUB
The Arguments are present in the message
Arguments keys include AutoClose and Browser.

testSubscriptionClose

Description:
When a Subscription is closed it will log this so that it can be correlated with the Create.
Input:

Running Broker
Client with a subscription.
The subscription is then closed.
Output:

<date> SUB-1002 : Close

Validation Steps:
The ID is correctSUB
There must be a Create message preceding this messageSUB-1001
This must be the message from the given Subscriptionlast

Performance Test Case

In addition to the performance test suite an additional performance test needs to be written that can be run with this new logging enabled and disabled so
that an attempt at quantifying any impact can be made.

Test Structure

The test should perform the following actions:

Connect a client

2.
3.
4.
5.
6.
7.
8.
9.

1.
2.
3.
4.

Create a channel/JMS Session
Create an exchange
Create a queue
Bind the exchange and queue
Create a subscriber on the queue
Close the Subscriber
Close the Session
Close the Connection

This will ensure that we hit as many of the new logging routines as possible.
If this test should also be run prior to any code changes so that our current performance can be recorded.

Risks

Testing of this nature is dependant on a lot of items that are out of the tests control such as:

CPU scheduling
CPU performance
Load
GC

As a result the test cannot be guaranteed to produce the same results each time. To mitigate this risk running the test in a loop an reporting an average
value of 10-20 runs should provide a more stable response.
Leaving the broker startup/shutdown out of the test loop will help improve the tests performance and repeatability.

	Operational Logging - Status Update - Test Specification

