
Tutorial for Camel on Google App Engine

Camel on Google App Engine Tutorial

Overview

Goal of this tutorial is to get a non-trivial Camel application running on Google App Engine (GAE). For developing that application the Camel Components
 are used. The example web application generates a weather report for a city that is entered by the user into a form and sends the for Google App Engine

weather report via email to either the currently logged-in user or a user-defined receiver. The following figure gives an overview. Users of this application
need to login with their Google account.

POSTed form data are dispatched to the Camel application via the component. The application transforms the report request and enqueues it with ghttp
the component for further background processing. It then generates an immediate HTML response containing information about the city and the gtask
receiver of the report. The response also contains a link logging out from the application. In the background, the application retrieves weather data from
the Google Weather Service, transforms the data to generate a simple weather report and sends the report by email via the component.gmail

Prerequisites

Sign up for a Google App Engine account if you don't have one.
Create a new application via the or reuse an existing one for uploading the example.admin console

Java clients

Clients other than web browsers may also interact with this application by POSTing the form data and an authentication cookie. At the moment
the example application doesn't include a standalone Java client that demonstrates how to do that. This is work in progress. In the meantime,
refer to the component documentation for instructions how to access security-enabled GAE services.glogin

Tutorial online

The next two sections describe how to checkout, build and deploy the example application. If you want to skip these steps, go directly to the #Us
 section and use the pre-deployed example application at .age http://camelcloud.appspot.com

https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/GAE
https://cwiki.apache.org/confluence/display/CAMEL/ghttp
https://cwiki.apache.org/confluence/display/CAMEL/gtask
https://cwiki.apache.org/confluence/display/CAMEL/gmail
https://appengine.google.com/
https://appengine.google.com/
https://cwiki.apache.org/confluence/display/CAMEL/glogin
http://camelcloud.appspot.com

Install the . This tutorial has been tested with version 1.3.6.Google App Engine SDK for Java

Deployment

First, checkout the sources from the Camel code repository.

svn co http://svn.apache.org/repos/asf/camel/trunk camel

Navigate to the camel-example-gae and install from here.

Open the file and replace the template application name camel-example-gae/src/main/webapp/WEB-INF/application-web.xml replaceme
with the name of the application that you created in the previous section. Optionally, adjust the version number if needed.

appengine-web.xml

<?xml version="1.0" encoding="utf-8"?>
<appengine-web-app xmlns="http://appengine.google.com/ns/1.0">
 <!--
 Set your application name and version here
 -->
 <application>replaceme</application>
 <version>1</version>

 <static-files>
 <exclude path="/index.html" />
 </static-files>

 <system-properties>
 <property name="java.util.logging.config.file" value="WEB-INF/logging.properties"/>
 </system-properties>

</appengine-web-app>

Then go to the directory and entercamel-example-gae

mvn install

This will create the application file in the target directory. Finally use the command-line tool of the App Engine SDK to deploy the application.war appcfg

appcfg update target/camel-example-gae-<version>

where needs to be replaced with the version of Camel you're using. You will be prompted for the email address and password of your Google version
App Engine account. After deployment the example application is ready to use.

Usage

In the following, the application name will be used as an example. If you deployed the example application somewhere else, use your camelcloud
application name instead. Go to . The application will redirect you to a login page (see also http://camelcloud.appspot.com Security for Camel GAE

).Applications

http://code.google.com/appengine/downloads.html
http://camelcloud.appspot.com
https://cwiki.apache.org/confluence/display/CAMEL/gsec
https://cwiki.apache.org/confluence/display/CAMEL/gsec

After login, the application displays the tutorial's main page where you can enter the name of a city and optionally enter an email address where to send
the waether report. If you check the report will be send to the email address that you used for login.Send report to me

After pressing the response isSubmit

The link brings you back to the main page, the logout link is to logout from the application (which brings you back to the login page). In the home
background, the current weather conditions for the user-entered city will be retrieved from the Google weather service and a formatted weather report will
be send by email. Submitting the form the first time initializes the application on Google App Engine which can take several seconds. Subsequent
submissions (within a certain time frame) are served much faster. Check your emails and you should now see a new email with subject Wheather

 and content similar to this one:report

Weather report for: London, England
Current condition: Klar
Current temperature: 12 (Celsius)

The report is partly internationalized, depending on the language settings of your browser.

Code walkthrough

The implements the message processing routes shown in the section. Input form data are received via the TutorialRouteBuilder #Overview ghttp
component. After receiving the request a adds the form data and information about the current user to a POJO. The RequestProcessor ReportData Re

 object is then serialized and queued for background processing. Queueing messages on GAE is done with the component. After adding portData gtask
the object to the queue an HTML response is generated with the .ReportData ResponseProcessor

http://svn.apache.org/viewvc/camel/trunk/examples/camel-example-gae/src/main/java/org/apache/camel/example/gae/TutorialRouteBuilder.java?view=markup
https://cwiki.apache.org/confluence/display/CAMEL/ghttp
http://svn.apache.org/viewvc/camel/trunk/examples/camel-example-gae/src/main/java/org/apache/camel/example/gae/RequestProcessor.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/examples/camel-example-gae/src/main/java/org/apache/camel/example/gae/ReportData.java?view=markup
https://cwiki.apache.org/confluence/display/CAMEL/gtask
http://svn.apache.org/viewvc/camel/trunk/examples/camel-example-gae/src/main/java/org/apache/camel/example/gae/ResponseProcessor.java?view=markup

TutorialRouteBuilder.java

package org.apache.camel.example.gae;

import org.w3c.dom.Document;

import org.apache.camel.Exchange;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.component.gae.mail.GMailBinding;
import org.apache.camel.processor.aggregate.AggregationStrategy;

public class TutorialRouteBuilder extends RouteBuilder {

 @Override
 public void configure() throws Exception {
 from("ghttp:///weather")
 .process(new RequestProcessor())
 .marshal().serialization()
 .to("gtask://default")
 .unmarshal().serialization()
 .process(new ResponseProcessor());

 from("gtask://default")
 .unmarshal().serialization()
 .setHeader(Exchange.HTTP_QUERY, constant("weather=").append(ReportData.city()))
 .enrich("ghttp://www.google.com/ig/api", reportDataAggregator())
 .setHeader(GMailBinding.GMAIL_SUBJECT, constant("Weather report"))
 .setHeader(GMailBinding.GMAIL_SENDER, ReportData.requestor())
 .setHeader(GMailBinding.GMAIL_TO, ReportData.recipient())
 .process(new ReportGenerator())
 .to("gmail://default");
 }

 private static AggregationStrategy reportDataAggregator() {
 return new AggregationStrategy() {
 public Exchange aggregate(Exchange reportExchange, Exchange weatherExchange) {
 ReportData reportData = reportExchange.getIn().getBody(ReportData.class);
 reportData.setWeather(weatherExchange.getIn().getBody(Document.class));
 return reportExchange;
 }
 };
 }

}

Background processing of the queued messages starts . The first step is to enrich the previously generated from("gtask://default") ReportData
object with data from the Google weather service. The service URL is dynamically constructed by setting the header to Exchange.HTTP_QUERY weather

. For example, if the user entered in the city field of the form the resulting URL is . The =<city> London ghttp://www.google.com/ig/api?weather=London
weather service is accessed with the component and the weather service response is aggregated into the object using a custom ghttp ReportData
aggregator returned by the method. Generating a simple weather report from is done by the reportDataAggregator() ReportData ReportGenerat

. The report is then sent by email with the component.or gmail

http://www.google.com/ig/api?weather=London
https://cwiki.apache.org/confluence/display/CAMEL/ghttp
http://svn.apache.org/viewvc/camel/trunk/examples/camel-example-gae/src/main/java/org/apache/camel/example/gae/ReportGenerator.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/examples/camel-example-gae/src/main/java/org/apache/camel/example/gae/ReportGenerator.java?view=markup
https://cwiki.apache.org/confluence/display/CAMEL/gmail

	Tutorial for Camel on Google App Engine

