
Related Articles

PipelineBuilder Service
StrategyBuilder Service

 IoC Cookbook - Patterns
ChainBuilder Service

IoC Cookbook - Patterns

IoC Cookbook - Overriding IoC Services  IoC cookbook  IoC cookbook - Service Configurations

Tapestry IoC has support for implementing several of the . In fact, the IoC container itself is a pumped up version of the Gang Of Four Design Patterns
Factory pattern.

The basis for these patterns is often the use of , where a  for the service is service builder methods configuration
combined with a factory to produce the service implementation on the fly.

Chain of Command Pattern
Main Article: Chain of Command

Let's look at another example, again from the Tapestry code base. The  interface is used to process the @Inject annotation on the fields of a InjectProvider
Tapestry page or component. Many different instances are combined together to form a .chain of command

The interface has only a single method (this is far from uncommon):

public interface InjectionProvider
{
  boolean provideInjection(String fieldName, Class fieldType, ObjectLocator locator,
      ClassTransformation transformation, MutableComponentModel componentModel);
}

The return type indicates whether the provider was able to do something. For example, the AssetInjectionProvider checks to see if there's an @Path 
annotation on the field, and if so, converts the path to an asset, works with the ClassTransformation object to implement injection, and returns true to 
indicate success. Returning true terminates the chain early, and that true value is ultimately returned to the caller.

In other cases, it returns false and the chain of command continues down to the next provider. If no provider is capable of handling the injection, then the 
value false is ultimately returned.

The InjectionProvider service is built up via contributions. These are the contributions from the TapestryModule:

public static void contributeInjectionProvider(
    OrderedConfiguration<InjectionProvider> configuration,
    MasterObjectProvider masterObjectProvider,
    ObjectLocator locator,
    SymbolSource symbolSource,
    AssetSource assetSource)
{
  configuration.add("Default", new DefaultInjectionProvider(masterObjectProvider, locator));

  configuration.add("ComponentResources", new ComponentResourcesInjectionProvider());

  configuration.add("CommonResources", new CommonResourcesInjectionProvider(), "after:Default");

  configuration.add("Asset", new AssetInjectionProvider(symbolSource, assetSource), before:Default");

  configuration.add("Block", new BlockInjectionProvider(), "before:Default");
  configuration.add("Service", new ServiceInjectionProvider(locator), "after:*");
}

And, of course, other contributions could be made in other modules ... if you wanted to add in your own form of injection.

The configuration is converted into a service via a service builder method:

  public InjectionProvider build(List<InjectionProvider> configuration, ChainBuilder chainBuilder)
  {
    return chainBuilder.build(InjectionProvider.class, configuration);
  }

Now, let's see how this is used. The InjectWorker class looks for fields with the InjectAnnotation, and uses the chain of command to inject the appropriate 
value. However, to InjectWorker, there is no chain ... just a  object that implements the InjectionProvider interface.single

https://cwiki.apache.org/confluence/display/TAPESTRY/PipelineBuilder+Service
https://cwiki.apache.org/confluence/display/TAPESTRY/StrategyBuilder+Service
https://cwiki.apache.org/confluence/display/TAPESTRY/ChainBuilder+Service
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+Cookbook+-+Overriding+IoC+Services
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+Cookbook+-+Overriding+IoC+Services
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+cookbook
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+cookbook
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+cookbook+-+Service+Configurations
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+cookbook+-+Service+Configurations
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+cookbook+-+Service+Configurations
https://cwiki.apache.org/confluence/display/TAPESTRY/ChainBuilder+Service
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/services/InjectionProvider.html


public class InjectWorker implements ComponentClassTransformWorker
{
  private final ObjectLocator locator;

  // Really, a chain of command

  private final InjectionProvider injectionProvider;

  public InjectWorker(ObjectLocator locator, InjectionProvider injectionProvider)
  {
    this.locator = locator;
    this.injectionProvider = injectionProvider;
  }

  public final void transform(ClassTransformation transformation, MutableComponentModel model)
  {
    for (String fieldName : transformation.findFieldsWithAnnotation(Inject.class))
    {
      Inject annotation = transformation.getFieldAnnotation(fieldName, Inject.class);

      try
      {
        String fieldType = transformation.getFieldType(fieldName);

        Class type = transformation.toClass(fieldType);

        boolean success = injectionProvider.provideInjection(
            fieldName,
            type,
            locator,
            transformation,
            model);

        if (success) transformation.claimField(fieldName, annotation);
      }
      catch (RuntimeException ex)
      {
        throw new RuntimeException(ServicesMessages.fieldInjectionError(transformation
            .getClassName(), fieldName, ex), ex);
      }

    }
  }
}

Reducing the chain to a single object vastly simplifies the code: we've  the loop implicit in the chain of command. That eliminates a lot of code, factored out
and that's less code to test, and fewer paths through InjectWorker, which lowers its complexity further. We don't have to test the cases where the list of 
injection providers is empty, or consists of only a single object, or where it's the third object in that returns true: it looks like a single object, it acts like a 
single object ... but its implementation uses many objects.

IoC Cookbook - Overriding IoC Services  IoC cookbook  IoC cookbook - Service Configurations

https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+Cookbook+-+Overriding+IoC+Services
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+Cookbook+-+Overriding+IoC+Services
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+cookbook
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+cookbook
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+cookbook+-+Service+Configurations
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+cookbook+-+Service+Configurations

	IoC Cookbook - Patterns

