JSF Usage

Table of Contents
Intro

The Intro page provides an overview, the setup of this module and describes the motivation for the features described below. This page explains the most
important APls and mechanisms of the JSF module provided by CODI. Please note that this page doesn't show all possibilities. If you have any question,
please contact the community!

Scopes

All CODI scopes have in common that they are bound to a window. A window is represented by the W ndowCont ext which stores all scopes and allows
to control the window and its scopes in a fine-grained manner.

Besides this documentation http://www.slideshare.net/os890/myfaces-codi-conversations provides a basic overview.

Window(-Context)

[Scope] [Scope]

Conversation Conversation
Group: Group:

Beanl UseCasel

Conversation Scope

First of all it's important to mention that CODI starts (grouped) conversations automatically as soon as you access conversation scoped beans.
Furthermore, the invocation of Conver sat i on#cl ose leads to an immediate termination of the conversation.

A CODI conversation scoped bean

i nport org. apache. nyf aces. ext ensi ons. cdi . core. api . scope. conver sat i on. Conver sati onG oup;

@onver sati onScoped
public class DenpBeanl inplements Serializable
{

/...

}

https://cwiki.apache.org/confluence/display/EXTCDI/JSF+Overview
http://www.slideshare.net/os890/myfaces-codi-conversations

.. leads to a conversation which contains just one bean with the group DemoBean1.

@ That's it!

As soon as you access the bean, the conversation gets started!

1 Hint

If you would like to use the bean within your JSF pages, you have to add @aned (j avax. i nj ect. Narmed).

1 Further details

Currently you will find also some further information here. We are going to merge both pages.

Grouped Conversations

(In case of CDI std. conversations there is just one big conversation which contains all conversation scoped beans.)
The grouped conversations provided by CODI are completely different. By default every conversation scoped bean exists in an "isolated" conversation.
That means there are several parallel conversations within the same window.

Example:

Separated CODI conversations

@Conver sat i onScoped
public class DenpBean2 inplements Serializable
{

...

}

@onver sat i onScoped
public class DenpBean3 inplenents Serializable
{
1.
}

... leads to two independent conversations in the same window (context).
If you close the conversation of DenbBean2, the conversation of DenbBean3 is still active.

If you have an use-case (e.g. a wizard) which uses multiple beans which are linked together very tightly, you can create a type-safe conversation group.

Grouped conversation scoped beans

interface Wzardl {}

@Conver sat i onScoped
@onver sati onG oup(W zardl. cl ass)
public class DenpBean4 inplenents Serializable
{
1.
}

@Conver sat i onScoped
@onver sat i onG oup(W zar dl. cl ass)
public class DenpBean5 inpl ements Serializable
{
...

}

https://cwiki.apache.org/confluence/display/EXTCDI/Conversations

You can use @onver sati onG oup to tell CODI that there is a logical group of beans. Technically @onver sat i onG oup is just a CDI qualifier.
Internally CODI uses this information to identify a conversation. In the previous example both beans exist in the same conversation (group). If you
terminate the conversation group, both beans will be destroyed. If you don't use @onver sat i onG oup explicitly, CODI uses the class of the bean
as conversation group.

Injecting a conversation scoped bean with an explicit group

...
public class CustonBeanl
{

@ nj ect

@onver sati onG oup(G oupl. cl ass)
private CustonBean2 denpBean;

@ nj ect
@onver sat i onG oup(G oup2. cl ass)
private CustonBean2 denpBean;

Since @onver sati onG oup is a std. CDI qualifier you have to use it at the injection point. You have to do that esp. because it's possible to create beans
of the same type which exist in different groups (e.g. via producer methods).

Example:

Producer methods which produce conversation scoped beans with different groups

interface Goupl {}
interface Group2 {}

public class CustonBean2
{
@r oduces
@onver sat i onScoped
@Conver sat i onG oup(G oupl. cl ass)
public CustonBean2 creat el nstanceFor G oupl()

{
}

return new CustonBean2();

@r oduces

@onver sat i onScoped

@Conver sat i onG oup(G oup2. cl ass)

public CustonBean2 creat el nstanceFor G oup2()

{

}
}

return new CustonBean2();

Terminating Conversations

You can inject the conversation via @ nj ect and use it to terminate the conversation immediately (see *) or you inject the current W ndowCont ext which
can be used to terminate a given conversation group.

Injecting and using the current conversation
i mport org.apache. nyf aces. ext ensi ons. cdi . core. api . scope. conver sati on. Conver sati onScoped;
i mport org. apache. nyf aces. ext ensi ons. cdi . core. api . scope. conver sati on. Conver sati on;

@onver sat i onScoped
public class DenpBean6 inplements Serializable

{
@ nj ect
private Conversation conversation; //injects the conversation of DenpBean6 (!= conversati on of DenpBean7)
/...
public void finish()
{
this. conversation. close();
}
}

@onver sat i onScoped
public class DenpBean7 inplenents Serializable
{
@nj ect
private Conversation conversation; //injects the conversation of DenpBean7 (!= conversation of DenpBean6)

...

public void finish()
{

t hi s. conversation. cl ose();
}
}

Injecting and using the explicitly grouped conversation

interface Wzard2 {}

@Conver sat i onScoped
@onver sat i onG oup(W zar d2. cl ass)
public class DenpBean8 inplements Serializable
{
@ nj ect
private Conversation conversation; //injects the conversation of Wzard2 (contains DenoBean8 and DenpBean9)

/...

public void finish()
{
this. conversation. close();
}
}

@onver sat i onScoped
@onver sati onG oup(W zar d2. cl ass)
public class DenpBean9 inplements Serializable
{
@ nj ect
private Conversation conversation; //injects the conversation of Wzard2 (contains DenbBean8 and DenpBean9)

...

public void finish()
{

}
}

t hi s. conversation. cl ose();

Terminating a grouped conversation outside of the conversation

/...
public class DenpBeanl0 inpl enents Serializable
{

@ nj ect

private W ndowContext w ndowContext; //injects the whole wi ndow context (of the current w ndow)
/...

public void finish()
{

}
}

t hi s. wi ndowCont ext . cl oseConver sati onG oup(W zard2.class); //closes the conversation of group Wzard2.class

Alternative approach for terminating a conversation group

/...
public class DenpBeanlO i npl ements Serializable

{
...

@ oseConver sati onGroup(group = W zard2. cl ass)
public void finish()
{
/...
}
}

Alternative approach for terminating a conversation group in case of an exception

/...
public class DenpBeanlO i npl ements Serializable

{
...

@ oseConversati onGroup(group = W zard2.class, on = MyRunti meExcepti on. cl ass)
public void finish()

{
...

}
}

These two alternative approaches can be used for simple use-cases.

Terminate all conversations

/...
public class DenpBeanll i nplenments Serializable
{

@ nj ect

private W ndowContext w ndowCont ext;
/...

public void finish()
{

t hi s. wi ndowCont ext . cl oseConversations(); //closes all existing conversations within the current w ndow
(context)
}
}

1 Hint
Since the View-Access scope is just a different kind of a conversation #cl oseConver sat i ons also terminates all view-access scoped beans.

There will be a SPI to customize this behavior. Usually you will need #cl oseConver sat i ons e.qg. if the user triggers a navigation via the main-
menu and in such a case you usually exit the current use-case. So it makes sense that all kinds of conversations will be closed.

Hint

CODI conversations get closed/restarted immediately instead of keeping them until the end of the request like std. conversations do, because
the behaviour of std. conversations breaks a lot of use-cases. However, if you really need to keep them until the end of the request, you can use
EnhancedConversation#end which is provided by the https://bitbucket.org/os890/codi-addons/src/d2el1lac5e941/enhanced_conversations/.

https://bitbucket.org/os890/codi-addons/src/d2e11ac5e941/enhanced_conversations/

Restarting conversations

Instead of destroying the whole conversation the conversation stays active and only the scoped instances are destroyed. (The conversation will be marked
as accessed.) As soon as an instance of a bean is requested, the instance will be created based on the original bean descriptor. This approach allows a
better performance, if the conversation is needed immediately (e.g. if you know in your action method that the next page will/might use the same
conversation again).

Restarting a conversation

@Conver sat i onScoped
public class DenpBeanl2 i npl ements Serializable

{
@ nj ect
private Conversation conversation;

...

public void finish()
{

}
}

this.conversation.restart();

Hint

Compared to std. CDI conversations CODI provides completely different conversation concepts. "Just the name is the same."
So please don't try to use the same implementation patterns which you might have learned for std. conversations.
CDI conversations are comparable to MyFaces Orchestra conversations.

Sub-Conversation-Groups (since CODI v1.0.1)

Due to the parallel conversation concept of CODI there is no need of something like nested conversations. Just use them in parallel and terminate them in
a fine-granular way as soon as you don't need them any longer. As described above, you can terminate a whole conversation-group. However, sometimes
it's essential to have subgroups if you need to end just a part of an use-case instead of all beans related to an use-case. However, that isn't a replacement
of sub-conversations, because a replacement isn't needed.

A sub-group is just a class or an interface used to identify a bunch of beans within a group. To terminate such a sub-group, it's just needed to pass the
class/interface to the corresponding API for terminating a conversation. The sub-group gets detected autom. and instead of terminating a whole
conversation-group, the beans of the sub-group get un-scoped.

Explicitly listing beans of a sub-group

public class MG oup{}

@Conver sat i onScoped
@onver sat i onG oup(MyG oup. cl ass)
public class BeanA {}

@Conver sat i onScoped
@onver sat i onG oup(MyG oup. cl ass)
public class BeanB {}

@onver sat i onScoped
@onver sat i onG oup(MyG oup. cl ass)

public class BeanC {}

@onver sati onSubG oup(subG oup = {BeanA. cl ass, BeanB.cl ass})
public class MySubG oup extends MyG oup {}

or

@onver sati onSubG oup(of = MyGoup.class, subG oup = {BeanA. class, BeanB.class})
public class MySubG oup {}

Terminating a sub-group

t hi s. wi ndowCont ext . cl oseConver sati on(MySubG oup. cl ass)

As you see the class/interface of the sub-group has to extend/implement the group or you specify it via the @onver sat i onSubG- oup#of . With @onver
sat i onSubGr oup#subG oup you can list all beans which belong to the sub-group. If you have a lot of such beans or you would like to form (sub-)use-
case oriented groups, you can use implicit groups:

Implicit sub-group

public interface Wzard {}

@onver sat i onSubG oup(of = MyGroup. class, subGoup = Wzard. cl ass)
public class InplicitSubG oup

{

}

@Naned(" nyW zard")

@onver sat i onScoped

@onver sati onG oup(MyG oup. cl ass)

public class WzardController inplenents Serializable, Wzard

{
...

}

t hi s. wi ndowCont ext . cl oseConver sati onG oup(| nplicit SubG oup. cl ass);

In the listing above all beans which implement the W zar d interface will be closed as soon as you close the | npl i ci t SubG oup .

As mentioned before the concept of sub-groups is no replacement for sub-conversations, because they aren't needed with the parallel conversation
concept of CODI. In most cases you won't face the need to use sub-groups. However, in some cases they allow to handle the conversation-management
in an easier way.

Window Scope

The window-scope is like a session per window. That means that the data is bound to a window/tab and it not shared between windows (like the session
scope does). Usually you need the window-scope instead of the session-scope. There aren't a lot of use-cases which need shared data between windows.

The usage of this scope is very similar to normal conversations. Only the cleanup strategy is different and the concept itself doesn't need/support the
usage of @onver sati onG oup.

Window scoped bean

@\ ndowScoped
public class PreferencesBean inplenents Serializable

{
...

}

Terminating the Window Scope/ window scoped Beans

Since W ndowCont ext #cl oseConver sat i ons doesn't affect window scoped beans we need a special API for terminating all window scoped beans.
If you don't use qualifiers for your window scoped beans, you can just inject the conversation into a window scoped bean and invoke the methods
discussed above. If you don't have this constellation, you can use the W ndowCont ext to terminate the window scoped beans or the whole window
context. If you terminate the whole window, you also destroy all conversation and view-access scoped beans automatically.

Terminate the whole content of the window

/...
public class CustonmW ndowControl | er Beanl
{

@ nj ect

private WndowCont ext w ndowCont ext ;
Il ..

public void cl oseW ndow()

{
t hi s. wi ndowCont ext . cl ose();

}
}

Terminate all window scoped beans

/...
public class CustonmW ndowControl | er Bean2
{

@ nj ect

private W ndowContext w ndowCont ext;
/1. ..

public void finish()
{

}
}

t hi s. wi ndowCont ext . cl oseConver sati onG oup(W ndowScoped. cl ass) ;

View Access Scope

In case of conversations you have to un-scope beans manually (or they we be terminated automatically after a timeout). However, sometimes you need
beans with a lifetime which is as long as needed and as short as possible - which are terminated automatically (as soon as possible). In such an use-case
you can use this scope. The simple rule is, as long as the bean is referenced by a page - the bean will be available for the next page (if it's used again the
bean will be forwarded again). It is important that it's based on the view-id of a page (it isn't based on the request) so e.g. Ajax requests don't trigger a
cleanup if the request doesn't access all view-access scoped beans of the page. That's also the reason for the name @*View*AccessScoped.

Access scoped bean

@/i ewAccessScoped
public class WzardBean i npl ements Serializable
{

/...

}

The usage of this scope is very similar to normal conversations. Only the cleanup strategy is different and the concept itself doesn't need/support the

usage of @onver sati onG oup.

1 Hint

@ViewAccessScoped beans are best used in conjunction with the CODI ClientSideWindowHandler, which ensures a clean browser-tab
separation without touching the old windowld. Otherwise a 'open in new tab' on a page with a @ViewAccessScoped bean might cause the

termination (and re-initialization) of that bean.

Rest Scope

Our Rest Scope is a Conversation which intended for GET pages. On the first access to such a bean on a view which gets invoked via GET, all the f:
viewParam will be parsed and stored internally. This RestScoped conversation automatically expires once the bean gets accessed via GET on another
view or with a different set of f.viewParam.

RestScoped bean

@Rest Scoped
public class CarBean inplenents Serializable

{
}

/...

The usage of this scope is very similar to normal conversations. Only the cleanup strategy is different and the concept itself doesn't need/support the
usage of @onver sati onG oup.

1 Hint

Please note that the usage of Post-Redirect-GET (PRG), e.g. via faces-redirect=true, might lead to ending the conversation and thus will delete
[re-initialize the bean.

JSF 2.0 Scope Annotations

JSF 2.0 introduced new annotations as well as a new scope - the View Scope. CODI allows to use all the CDI mechanisms in beans annotated with:
® javax. faces. bean. Appl i cati onScoped
® javax. faces. bean. Sessi onScoped
® javax. faces. bean. Request Scoped
® javax. faces. bean. Vi ewScoped
Furthermore, the managed-bean annotation (j avax. f aces. bean. ManagedBean) is mapped to @Naned from CDI.

All these annotations are mapped automatically. So you won't face issues, if you import a JSF 2 annotation instead of the corresponding CDI annotation.

Flash Scope

CODI provides a fine grained conversation scope with multiple parallel and isolated/independent conversations within a single window as well as a view-
access scope (see above). So we (currently) don't think that we need a flash scope. Please contact us, if you find an use-case which needs the flash
scope and you can't use the other CODI scopes. Other portable extensions (like Seam 3 btw. Seam-Faces) just provide this scope because they don't
have such fine grained conversations.

GET-Requests

All CODI scopes also support navigation via GET-Requests.

With JSF2 you can use GET-Requests with h: | i nk . It's recommended to use it instead of a plain HTML link.

JSF2 component for GET-Requests
<h:1ink val ue="My Page" outcone="nyPage"/>

However, if you have a good reason for it and you really have to use a plain HTML link instead, you have to use something like:

HTML link as an alternative to the JSF2 component for GET-Requests

My
Page< /a >

Dependency Injection

CODI allows using @Inject within the following JSF (1.2 and 2.0) artifacts:
® Converter
® Validator
® PhaselListener

As soon as a converter or a validator is annotated with @Advanced it's possible to use @Inject.

Example for a validator:

@Inject within a JSF validator

@\dvanced
@racesValidator("...") //use it just in case of JSF 2.0
public class Dependencyl njecti onAwareVal i dator inplenents Validator
{
@ nj ect

private CustonValidationService custonValidationService;

public void validate(FacesContext facesContext, U Conponent ui Component, Object value) throws
Val i dat or Excepti on
{

Violation violation = this.custonValidationService.validate(val ue);
/...

Example for a converter:

@Inject within a JSF converter

@\dvanced
@acesConverter("...") //use it just in case of JSF 2.0
public class Dependencyl nj ecti onAwar eConverter inplenments Converter
{
@ nj ect

private OrderService order Service;

public Object getAsObject (FacesContext facesContext, U Conponent ui Conponent, String val ue)
throws ConverterException

{
if (value !'= null && value.length() > 0)
{
return this.orderService.l oadByO der Nunber (val ue) ;
}
return null;
}
/...

Life-cycle Annotations

Phase-Listener Methods
As an alternative to a full phase-listener CODI allows to use observers as phase-listener methods.

Example:

Global observer method for phase-events

protected void observePreRender Vi ew(@bserves @Bef orePhase(RENDER_RESPONSE) PhaseEvent phaseEvent)

{
...

}

If you would like to restrict the invocation to a specific view, it's possible to use the optional @/i ew annotation.

Observer method for phase-events for a specific view

@/i ew DenpPage. cl ass)
public void observePost| nvokeApplicati on(@bserves @\fterPhase(JsfPhaseld. | NVOKE_APPLI CATI ON) PhaseEvent event)

{
...

}

For further details about DenmpPage. cl ass please have a look at the view-config section.

1 Hint

If you don't need the PhaseEvent as parameter, you can just annotate your methods with @ef or ePhase(...) and @\ft er Phase(...).

1 Hint

@/i ewis an interceptor. The disadvantage is that intercepted beans introduce an overhead.
If you would like to use this mechanism for implementing pre-render view logic, you should think about using the @ageBean annotation.
Further details are available in the view-config section.

Since v0.9.1 @/i ewused as class-level annotation won't lead to an interceptor and allows to use it instead of @PageBean.

Phase-Listener

CODI provides an annotation for phase-listeners:

PhaselListener configured via annotation

@sf Phaseli st ener
public class DebugPhaseLi stener inplenments Phaseli stener

{

private static final Log LOG = LogFactory. get Log(DebugPhaselLi st ener. cl ass);
private static final |long serialVersionU D = -3128296286005877801L;

public void beforePhase(PhaseEvent phaseEvent)
{
i f(LOG i sDebugEnabl ed())
{
LOG debug("before: " + phaseEvent. getPhaseld());
}
}

public void afterPhase(PhaseEvent phaseEvent)

{
i f(LOG i sDebugEnabl ed())

LOG debug("after: " + phaseEvent.getPhaseld());

}
}

publ i c Phasel d get Phasel d()
{
return Phasel d. ANY_PHASE;
}
}

If you have to specify the order of phase-listeners you can us the optional @ nvocat i onOr der annotation.
In combination with @\dvanced it's possible to use dependency injection.

Example:

@Inject within a JSF phase-listener

@\dvanced
@sf PhaselLi st ener
@nvocationOrder(1) //optional
public class DebugPhaseLi stener inplenments Phaseli stener
{
@ nj ect
private DebugServi ce debugService;

public void beforePhase(PhaseEvent phaseEvent)

{

t hi s. debugServi ce. | og(phaseEvent);
}
public void afterPhase(PhaseEvent phaseEvent)
{

thi s. debugServi ce. | og(phaseEvent);
}
public Phasel d get Phasel d()
{

return Phasel d. ANY_PHASE;
}

}

@ Why @JsfPhaseListener instead of @PhaseListener?

It's easier to use the annotation because there isn't an overlap with the name of the interface. So it isn't required to use the fully qualified name
for one of them.

Faces-Request-Listener

Sometimes it's essential to perform logic directly after the FacesCont ext started and/or directly before the FacesCont ext gets destroyed. In such a
case CODI provides the annotations @ef or eFacesRequest and @Af t er FacesRequest .

Example:

Observer method with @BeforeFacesRequest

protected void initFacesRequest (@bserves @BeforeFacesRequest FacesContext facesContext)

{
...

}

Producers

CODI offers a bunch of producers for JSF artifacts.

Example:

Injection of the current FacesContext

@ nj ect
private FacesContext facesContext;

JsfLifecyclePhaselnformation

Helper for detecting the current phase of the JSF request lifecycle.

Example:

Detecting the current phase

public class M/Bean

{
@ nj ect
private JsfLifecycl ePhasel nfornmati on phasel nformati on;
public void execute()
{
if (this.phaselnfornation.isProcessValidationsPhase() || this.phaselnfornmation.
i sUpdat eMbdel Val uesPhase())
{
/...
}
}
}

Type-safe View Config

In some projects users are using enums which allow e.g. a type-safe navigation. CODI provides a mechanism which goes beyond that. You can use
classes which hosts a bunch of meta-data. One use-case is to use these special classes for type-safe navigation. Beyond that CODI allows to provide
further meta-data e.g. page-beans which are loaded before the rendering process starts, type-safe security and it's planned to add further features to this
mechanism.

The following example shows a simple view-config.

View config for /home.xhtml

@rage
public final class Hone inplenments ViewConfig

{
}

This mechanism works due to the naming convention. Instead of the convention it's possible to specify the name of the page manually. This feature is
described at the end of this section.

1 Important hint

Use classes for your pages and for everything else interfaces!
If you would like to group pages (you will learn some reasons for that later on), you can nest the classes.

Grouping pages

public interface Wzard extends Vi ewConfig

{
@rage
public final class Pagel inplenments Wzard

{
}

@rage
public final class Page2 inplenments Wzard

{
}

Such a grouping allows to reduce the number of class files in your workspace. Furthermore modern IDEs allow to show the logical hierarchy out-of-the-box
(in Intellij it's called "Type Hierarchy").

1 Hint

At @age(basePath = "") we have to override the default with an empty string to have a virtual view config which doesn't affect the final
name.

Organizing your pages

View configs allow to reflect your folder structure in the meta-classes.

Grouping pages and folder structures

public interface Wzard extends ViewConfig
{
@Page
public final class Stepl inplenents Wzard
{
}

@rage
public final class Step2 inplenents Wzard

{
}

... leads to the following view-ids: / wi zar d/ st epl. xht ml and/wi zar d/ st ep2. xht i .
That means - if you rename the folder wizard, you just have to rename a single class and everything is in sync again.

1 Hint

While the nested classes lead to the final path of the file, the inheritance allows to configure a bunch of pages.

Grouping pages and folder structures

@Page(navi gati on = REDI RECT)
public interface Wzard extends ViewConfig
{
@rage
public final class Stepl inplenents Wzard
{
}

@rage
public final class Step2 inplenents Wzard

{
}

... leads to redirects as soon as navigation is triggered and St ep1 or St ep2 are the targets. You can centralize all available configs. Some of them can be
replaced at a more concrete level (in the example above it would be possible to override the redirect mode e.g. for St ep1 or St ep2) whereas others will
be aggregated (like AccessDeci si onVot er s}.

1 Hint

Besides this naming convention you can use basePat h to force a different name. Furthermore, @age allows to adjust the navigation mode
(forward (= default) vs. redirct) and the file extension (default: xhtml) as well as the name of the page itself.

Custom view meta-data

It's possible to use custom annotations in view-config classes. Just annotate the custom annotation with @/ ewivet aDat a.

Implementation of a custom view meta-data annotation

@rar get ({TYPE})
@Ret ent i on(RUNTI ME)
@ocunent ed

@/i em\et aDat a
public @nterface Vi ewmbde
{
/...
}

Usage of a custom view meta-data annotation

@rage

@/i emvbde

public final class Hone inplenments ViewConfig
{

}

Optionally you can specify if a nested class (e.g. UseCasel. St epl) overrides the meta-data. That means there will be just one instance per such a
custom annotation per page. Per default all annotations are collected independent of the already found types and independent of the instance count of an
annotation type.

Implementation of a custom view meta-data annotation which allows to override meta-data

@rar get ({TYPE})
@ret ent i on(RUNTI ME)
@ocumnent ed

@/i ewiet aDat a(override = true)
public @nterface Pagel con
{

/...

}

Override view meta-data annotation

@ragel con(...)

public interface UseCasel extends ViewConfig

{
@age
/linherits the page-icon of the use-case
public final class Stepl inplenents Wzard
{
}

@rage

@ragelcon(...) //overrides the page-icon of the use-case
public final class Step2 inplements Wzard

{

}

Resolve view meta-data annotations

@ nj ect
private Vi ewConfi gResol ver vi ewConfi gResol ver;

t hi s. vi emConfi gResol ver. get Vi ewConf i gDescri pt or (UseCasel. St ep2. cl ass) . get Met aDat a() ;

//or sonething |ike:
t hi s. vi emConfi gResol ver. get Vi ewConfi gDescri ptor(this.facesContext.getVi ewRoot ().getViewd()).getMtaData();

Page ranges

Type-safe view configs also allow to easily specify the valid page range.

Specified page range

public interface PublicView extends ViewConfig {}

@rage
public class ReportPage inplements PublicView {}

/...

@ecur ed(Logi nAccessDeci si onVot er. cl ass)
public interface Internal extends ViewConfig

{
@rage
public class ReportPage inplements Internal {}

}
...

public O ass<? extends Internal > show nternal Report ()

{

/...

return Internal.ReportPage. cl ass;
}
/...

public O ass<? extends PublicView> showPubl i cReport ()

{
...

return ReportPage. cl ass;

In this example it's easy to ensure that the correct target page is used. It isn't possible to expose the internal report (page) as public report by accident (due
to a wrong import or a bad refactoring).

Type-safe Navigation

In the previous section you have learned some details about the view-config mechanism provided by CODI. You can use these meta-classes for the
navigation.

Example:

Action method with type-safe navigation

public dass<? extends ViewConfig> navi gat eToHoneScreen()

{

return Hone. cl ass;

}

Hint

Some EL implementations like JUEL check the allowed return type explicitly. In combination with early implementations of Facelets you might
see an exception which tells that action methods have to return strings. In such a case you can use Hone. cl ass. get Nane() .

@ Support of getNavigationCases

The new API of JSF 2 Conf i gur abl eNavi gat i onHandl er #get Navi gat i onCases doesn't support implicit navigation. That's not the case
with type-safe navigation. CODI combines the best of both. You don't need navigation rules and you will get the information with calling Confi g
ur abl eNavi gat i onHandl er #get Navi gat i onCases if you need to query these information. (If you don't need it, you can deactivate it via

the type-safe CODI config.)

Navigation via GET Requests (JSF 2.0+) (since v1.0.2)

Since JSF 2.0 it's possible to use GET requests for navigating between pages. With MyFaces CODI you can use type-safe navigation also in combination

with GET-Requests.

JSF-Navigation via GET requests

<l-- Std. approach with JSF 2.0: -->

<h: button value="..." outcone="/pages/ nyPage. xhtm ">
<f:param nanme="paranl" val ue="v1"/>
</ h: butt on>

<l-- CODI allows to use: -->
<h: button value="..." outcone="#{nyController.nyPage}">

<f:param nanme="paranl" val ue="v1"/>
</ h: butt on>

<l-- or if needed (not recommended, because it isn't type-safe):

<h: button value="..." outcone="cl ass myPackage. Pages. MyPage" >
<f:param nanme="paranl" val ue="v1"/>
</ h: butt on>

The corresponding code in MyController

public C ass<? extends ViewConfig> get M/Page()
{

}

return Pages. MyPage. cl ass;

PreViewConfigNavigateEvent

In case of type-safe navigation it's possible to observe navigations which have a view-config for the source-view as well as the target-view.

->

Observe type-safe navigation event

protected void onVi ewConfi gNavi gati on(@bserves PreVi enConfi gNavi gat eEvent navi gat eEvent)
{
/...

}

Furthermore, it's possible to change the navigation target.

Observe type-safe navigation event

protected void onVi ewConfi gNavi gati on(@bserves PreVi enConfi gNavi gat eEvent navi gat eEvent)
{
i f(Wzard. Pagel. cl ass. equal s(navi gat eEvent. get FronView()) &&
I W zar d. Page2. cl ass. equal s(navi gat eEvent. get ToVi ew()))
{

navi gat eEvent . navi gat eTo(DenpPages. Hel | oMyFacesCodi 2. cl ass) ;

}

View-Configs and Parameter (since v1.0.2)

Sometimes it's needed to add parameters. If you are using e.g. the implicit navigation feature of JSF 2.0+ you would just add them to the string you are
using for the navigation. In case of type-safe view-configs it isn't possible to add such parameters directly. To add such parameters, it's required to use the
@ragePar anet er annotation. It's possible to annotate action-methods or view-config classes which represent a page with this annotation. So it's possible
to enforce parameters for all JSF based navigations to a view or to add parameters just in case of special actions. Furthermore, it's possible to add multiple
parameters with @agePar anet er . Li st . The usage for action methods is the same as the usage for view-configs. The following example shows a
simple parameter.

@rage
@ragePar anet er (key="cust onPar ant', val ue="#{cust onBean. val uel}")
public class Index inplenments ViewConfig {}

Type-safe Security

Action method with type-safe navigation

@rage

@secur ed(Order Vot er. cl ass)

public final class OrderWzard inplenments ViewConfig
{

}

Example for an AccessDecisionVoter

@\ppl i cati onScoped
public class OderVoter extends AbstractAccessDeci si onVoter

{
@ nj ect
private UserService userService;
@ nj ect
private User currentUser;
public void checkPerm ssion(lnvocationContext invocationContext, Set<SecurityViolation> violations)
{
if(!this.userService.isActiveUser(this.currentUser))
{
viol ations. add(newSecurityViolation("{inactive_user_violation}"));
}
}
}

The message-key of the previous example will be passed to the MessageCont ext with the Jsf qualifier. You can also use a hardcoded inline message.
If you would like to use a different MessageCont ext you can just inject it (see the following example).

Example for an AccessDecisionVoter with a custom MessageContext

@\ppl i cati onScoped
public class OderVoter extends AbstractAccessDeci si onVoter

{
@ nj ect
private UserService userService;

@ nj ect
private User currentUser;

@nj ect
@Cust om
private MessageContext nessageContext;

public void checkPerm ssion(lnvocationContext invocationContext, Set<SecurityViolation> violations)

{

if(!this.userService.isActiveUser(this.currentUser))

{
String reason = this.messageContext.nessage().text("{inactive_user_violation}").toText();
vi ol ati ons. add(newSecurityViol ati on(reason));

Customizing violation-handling (since v1.0.2)
Per default the created violation message gets added as faces-message. However, sometimes users don't have to see such messages (e.g. in case of

autom. navigation to a login page). For such cases it's possible to introduce a custom Securi t yVi ol at i onHandl er. As soon as a project contains a
bean which implements this interface, the bean will be used for handling the violations (instead of adding them autom. as faces-message).

(Security) Error pages

The following example shows how to create a default error page. It's just allowed to provide one default error page per application.
Instead of implementing Vi ewConf i g it's required to implement the Def aul t Er r or Vi ewinterface.

Default error page

@rage
public final class Login extends Defaul tErrorView
{
}
1 Hint

@ecur ed allows to override the default error page for a specific page or a group of pages.

If there isn't an error page, CODI will throw an AccessDeni edExcepti on.

Page-Beans

It's a common pattern in JSF applications to create beans which act as page-controllers (aka Page-Beans). Such beans are mapped to 1-n views.
Usually there is just one concrete implementation.

CODI allows to specify the page-bean as optional meta-data via the view-config mechanism.
You can use this approach to load the page-bean before the rendering process starts. So the post-construct method (= methods annotated with @Post Con

st ruct) will be invoked if it is needed. Furthermore, it's possible to use @ef or ePhase(...) and @\ft er Phase(...) without observer syntax of CDI.

View-config with Page-Bean

@rage

@ageBean(Logi nPage. cl ass)

public final class Login inplenents ViewConfig
{

}

Page-Bean

/...
public final class LoginPage inplenents Serializable

{
@ost Const ruct

protected void initBean()

{
}

@ t er Phase(| NVOKE_APPLI CATI ON)
protected voi d post PageAction()

{

/...

...
}

@Bef or ePhase(RENDER_RESPONSE)
protected void preRender Vi ew)
{
/...
}
}

... you can use @ef or ePhase and @Af t er Phase in the same way like the Phase-Listener Methods described above (just without the need of the Phase
Event).

Page-Bean with view-controller annotations

/...
public final class LoginPage inplenents Serializable

{
@ost Const ruct
protected void initBean()

{
}

/...

@nitView
protected void initView)
{

}

/...

@r ePageAct i on
protected void prePageAction()
{
/...
}

@r eRender Vi ew
protected void preRender Vi ew)
{
/...
}
}

@Post Const ruct in a view-controller bean this lifecycle-callback is invoked before the rendering phase at latest. However, it's just called at the first time
the instance of the bean is used (as view-controller bean - depending on the scope of the bean). If it's required to process logic every time before the page
gets rendered, it's possible to use @r eRender Vi ew.

@ ni t Vi ewis invoked after a view was created.

Example:

viewA created -> @nitView call back for viewA called
viewB created -> @nitView callback for viewB called
viewB created -> logic already initilized -> no call back
viewA created -> @nitView call back for viewA called
viewB created -> @nitView callback for viewB called

-> Such methods get called after the corresponding view was created.
The evaluation happens after every request-lifecycle-phase to avoid that other features or frameworks lead to unexpected calls if they have to create views
temporarily (e.g. security frameworks).

@r ePageAct i on is invoked directly before the action-method. In comparison to @ef or ePhase(| NVOKE_APPLI CATI ON) , @r ePageAct i on also
works for immediate actions. If you have to use a bean like the Request TypeResol ver just inject it into the bean and use it.

@r eRender Vi ewis invoked before the page gets rendered. It allows e.g. to load data and change the target-view in case of an unexpected error.

@rost Render Vi ewis invoked after the rendering process and allows to do special clean-up.

1 Hint
For normal pre-render view logic you can use phase-listener methods in combination with @/i ew.

Attention: the performance depends on the interceptor-performance of your CDI implementation.

Sometimes it's required to use multiple page controllers for a page (e.g. in case of two very different parts in the page which should be handled by different
view-controllers). Such a use-case isn't very common, however, via @PageBean. Li st it's possible to attach multiple pages-beans to a view-config.

View-config with multiple Page-Beans

@rage

@ageBean. Li st ({
@PageBean(Beanl. cl ass),
@PageBean(Bean2. cl ass)

b
public final class UseCasel inplenents ViewConfig

{
}

Alternative to @PageBean (since v0.9.1)

If you don't like the idea of a central type-safe config but you would like to use type-safe navigation, it's possible to use @i ew as alternative to @ageBean
directly in the class of the bean.

the @ageBean example above would look like:

View controller example without @PageBean

@rage

public final class UseCasel inplenments ViewConfig
{

}

@bdel
@/i e UseCasel. cl ass)
public class Beanl inplements ViewConfig

{ @r eRender Vi ew
protected void preRender Vi ew()
{
/...
}
}
@nbdel

@/i e UseCasel. cl ass)
public class Bean2 inplenents ViewConfig

{
@r eRender Vi ew
protected void preRender Vi ew)
{
/...
}
}

Inline-View-Configs (since v0.9.3)

Esp. at the beginning the full blown approach which is available with type-safe View-Configs might look a bit heavy. Several users see the need for the
approach later on as soon as their applications become larger.

That was the reason for providing an approach which is easier to use at the beginning. It allows to provide the View-Config at the page-bean
implementations. So it's called Inline-View-Config.

However, there are clear restrictions e.g. for using it in combination with type-safe navigation, one page-bean per page is required. That means if you are
using a page-bean e.g. per wizard, you have to switch to the full View-Config approach or you will need really one bean per page.

This approach uses the package structure for creating the View-IDs.
Due to this approach a marker is needed which marks the root path. Since there are quite different approaches to structure the folders for your pages,
there are several styles for using this marker.

If you have a dedicated root-folder for all your pages (and sub-folders) you can reflect it in your package structure. The following example shows a class
marked with @ nl i neVi ewConf i gRoot in the package *.pages. So the root folder has to have the name 'pages'. Every sub-package will be mapped to a

sub-folder. In case of Inline-View-Configs the page-bean has to implement the Vi ewConf i g in-/directly and has to be annotated with @age. You can use
the same features of the normal View-Config including type-safe navigation, lifecycle callback annotations,...

Inline-View-Config example 1

package ny. pkg. pages;

@ nl i neVi ewConfi gRoot
public final class RootMarker

{
}
package ny.pkg. pages.registration;
/...
@\aned
@Request Scoped
@rage
public class RegistrationStepl inplenments ViewConfig
{
public O ass<? extends ViewConfig> confirn()
{
/...
return RegistrationStep2Page. cl ass;
}
}

/l/will be interpreted as /pages/registration/registrationStepl.xhtmn

Esp. at the beginning you maybe don't have a folder for your pages. That means if you start with /pagel.xhtml instead of /pages/pagel.xhtml, you have to
specify it explicitely with / *.

Furthermore, it's possible to specify a so called pageBeanPost f i x for allowing to use a name convention for your pages beans which won't be reflected
by the xhtml file name.

Inline-View-Config example 2

package ny. pkg. pages;

@ nl i neVi enConfi gRoot (basePath = "/*", pageBeanPostfix = "Controller")
public final class Root Marker

{

}

package mny. pkg. pages. regi stration;
/...

@laned
@Request Scoped
@rage
public class RegistrationStep3Controller inplenments ViewConfig
{
...

}

//will be interpreted as /registration/registrationStep3.xhtni

If you have a fine grained package structure which isn't reflected in the folder-structure of your pages (or a different name has to be used), it's possible to
specify a basePat h. Without a * at the end, all sub-packages are ignored.

Inline-View-Config example 3

package ny. pkg. pages;

@nl i neVi enConfi gRoot (basePath = "/pages/", pageBeanPostfix = "Page")
public final class Root Marker

{

}

package mny. pkg. pages.registration;
/...

@\aned

@Request Scoped

@rage

public class RegistrationStep2Page inplenents ViewConfig
{

}

...

//will be interpreted as /pages/registrationStep2. xhtm

Compared to the previous example the next example shows a custom basePat h and all sub-packages will be mapped to sub-folders.

Inline-View-Config example 4

package ny. pkg. pages;

@ nl i neVi enConfi gRoot (basePath = "/views/*")
public final class RootMarker

{

}

package ny. pkg. pages.registration;
/...

@Naned

@Request Scoped

@rage

public class RegistrationStep4 inplenments ViewConfig
{

}

...

//will be interpreted as /views/registration/registrationStep4.xhtn

	JSF Usage

