
Notes For Maven 3.9.x Plugin Developers
Contents:

Incoming Breaking Changes
Incoming Notable Changes
Minimal Set Of Best Practices
Testing Maven Plugins

This page will take a stab on announcing breaking changes with latest upcoming Maven versions, and to discuss "best practices" for building Maven
Plugins. This page assumes that reader know the general "best practices" for Java Projects (as Maven Plugins are basically Java projects).

Incoming Breaking Changes

Maven Project resources are limited we cannot cover "backward compatilibty" across two major versions. Hence, Maven 2 support is about to be removed.
Below is the summary of breaking changes, that will happen in upcoming Maven 3.9.0 and 4.0.0:

 The artifact is not anymore "auto injected" (auto provided) to plugins classpath. Maven 2 MNG-6965 org.codehaus.plexus:plexus-utils
did provide this dependency from Maven Core automatically to plugins and extensions, then Maven 3.0.0-alpha-3 added this feature to ease
plugins transition . This is not the case anymore. Plugin developers have to prepare for this change. Backward compatible change is MNG-3819
really simple: just declare dependency on in scope, if your plugin does use classes from it, but does not have it plexus-utils compile
declared (or have it in scope).provided
If you depend on (the Maven2 compatibility layer), it's really time to look for alternatives. Note: this org.apache.maven:maven-compat
dependency in scope is "acceptable" and actually required by some testing frameworks (see below). This test module is removed in 3.9.0, not

, but as part of Maven 2 backward compatibility layer, is to be removed somewhere in future.nor in first releases of 4.0.x

Incoming Notable Changes

Maven 4.0.0 brings some new things in the play:

A brand new immutable Maven API. Finally Maven gets a proper API, that solves two things: developers of plugins can unlesh all the Maven
power without jumping hoops and loops, and for us (Maven developers) even better: the Maven implementation finally gets hidden, we can freely
hack away. The idea is that the new Maven API becomes the "only touch point" between Plugins and Maven, so Maven Core should not be
hindered to evolve with preserving binary compatibility of it's internals (as they will be not accessible, sealed off). Maven API will be available
starting with 4.0.0 release of Maven, and we will offer "transition time" for plugins as first Maven 4.0.x (undefined yet for how long) will support
both, "old way written Maven Plugins" (as today) and Maven API. But, once you convert to Maven API, your plugin will have a prerequisite of
Maven 4+.
Default Maven Transport changes from legacy Wagon to more modern Resolver HTTP "native" transport. For plugin developers this should not
be a huge change, as Wagon is still exposed via (deprecated Maven 3.x APIs), while new Maven 4 Transport API was introduced, that is
intentionally simplistic, to cover most common (simple) cases. Still, if plugin needs something more, that cannot me achieved using this Transport
API (nor using M4 Resolver API), it should roll it's own transport.

Minimal Set Of Best Practices

Maven Plugins are meant to be invoked by and run within Maven. Hence, one can draw a parallel between them and, for example, Java Servlets, where
Servlet Container "provides" some dependencies to implementations. In this aspect: Maven is also a Container, container for Maven Plugins. Maven
provides to plugins the "Maven API" classloader as parent, but to build a plugin, you still need to declare some depedencies.

A Maven Plugin aside of usually "Java project" things like Java source/target/release version needs to declare several extra things:

mandatory: packaging is maven-plugin
recommended: lock down the version (as otherwise you depend on version that Maven brings, your build is not maven-plugin-plugin
reproducible).
recommended: the "required" (minimal) Maven version to run within (this is usually same as Maven version you build against) in POM as project

 field./prerequisites/maven
recommended: the Maven provided bits should be put in scope. Recent versions will warn you about this.provided maven-plugin-plugin
mandatory: declare needed dependencies, minimally required are org.apache.maven: and maven-plugin-api org.apache.maven.plugin-

 (to be able to annotate your Mojos, all the older ways like Javadoc taglets are being deprecated). tools:maven-plugin-annotations

We can already see, that we have at least two repeating versions, so they are "potential" properties to lessen duplication:

the to declare Maven version we build against (and use it in prerequisites and dependency declarations)mavenVersion
the to declare Maven Plugin Tools version, once as dependency version for mavenPluginToolsVersion org.apache.maven.plugin-

 dependency and once for build plugin (and tools:maven-plugin-annotations org.apache.maven.plugins:maven-plugin-plugin
optionally for .org.apache.maven.plugins:maven-plugin-report-plugin)

Hence, a "minimal" Maven Plugin POM (showing elements related to Maven Plugins only) should have elements like this:

https://issues.apache.org/jira/browse/MNG-6965
https://issues.apache.org/jira/browse/MNG-3819

 <prerequisites>
 <maven>${mavenVersion}</maven>
 </prerequisites>

 <properties>
 <mavenVersion>3.6.3</mavenVersion>
 <mavenPluginToolsVersion>3.7.0</mavenPluginToolsVersion>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-plugin-api</artifactId>
 <version>${mavenVersion}</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.maven.plugin-tools</groupId>
 <artifactId>maven-plugin-annotations</artifactId>
 <version>${mavenPluginToolsVersion}</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-plugin-plugin</artifactId>
 <version>${mavenPluginToolsVersion}</version>
 </plugin>
 </plugins>
 </build>

Notes:

Do not try to support 10+ years of legacy. It is warmly recommended to just forget about ill fated Maven 3.0, so consider Maven versions from 3.1
and above. Still, even with Maven 3.1 you cover 10 years. Currently Apache Maven project defines "minimal baseline" (prerequisite) of 3.2.5, but
only in case of "trivial" plugins like is. Still, "latest stable" it too high constraint as well. Best middle ground is something maven-clean-plugin
like "latest patch release of one/two minor versions minus from current stable" or some similar policy (as of writing: 3.8.7 is latest stable, hence
3.6.3 is sane middle ground). Also, do not forget that Maven versions since 3.3 were all Java 7, just like current latest stable 3.8.7 is!
This snippet shows ! These are required for Maven Plugins, but as Maven Plugin is a only entries recommended/required for Maven Plugins
Java Project, all the POM required elements, part of "best practices" for Java Project (parent POM, fixed plugin versions, etc) are not shown here!
Important: Maven 2.x was automatically "providing" for plugins as well, or in other words, org.codehaus.plexus:plexus-utils
plugins did not had to to declare as dependency, it was "just there" (or they did, but in scope). Maven 3.x plexus-utils provided
continued doing this as part of "backward compatibility" with Maven 2.x line, but ! this will not happen anymore with Maven 3.9 and 4.0
If your plugin uses , but does not have it declared as scoped dependency, it will fail in Maven 3.9.0 or later.plexus-utils compile
In case your plugin does a bit more than something trivial, you usually need to use more of Maven. In that case just add all the needed
depenendencies in your POM as provided scoped. In general, it is true that all Maven artifacts having groupId org.apache.maven should be in
provided scope. Important: There is . This artifact is not one unfortunate exception to this rule above: org.apache.maven:maven-archiver
part of Maven Core, and uses unfortunate groupId. Should be instead.org.apache.maven.shared

Then you can enlist your other (non-Maven) dependencies as well.

Testing Maven Plugins

Testing Maven Plugins is not trivial thing, given they are Maven Components, but not plain Eclipse Sisu or Codehaus Plexus components, but rather the
plugin descriptor needs to be "translated" and installed into (any of two) container, plus the existing components in Maven Plugin JAR, if any. Hence,
simplest is to use some existing frameworks for testing Maven Plugins.

This section is more like a collection of links/pointers, so below is a list of some documentation and frameworks:

the "old school" https://maven.apache.org/plugin-developers/plugin-testing.html
nice related writeup/series and https://dev.to/khmarbaise/series/8418 https://khmarbaise.github.io/maven-it-extension/itf-documentation
/background/background.html

Alternative frameworks supporting Junit5 or taking alternate approach:

https://khmarbaise.github.io/maven-it-extension/
https://github.com/takari/takari-plugin-testing-project

https://maven.apache.org/plugin-developers/plugin-testing.html
https://dev.to/khmarbaise/series/8418
https://khmarbaise.github.io/maven-it-extension/itf-documentation/background/background.html
https://khmarbaise.github.io/maven-it-extension/itf-documentation/background/background.html
https://khmarbaise.github.io/maven-it-extension/
https://github.com/takari/takari-plugin-testing-project

	Notes For Maven 3.9.x Plugin Developers

