Property Validation Usage

Intro

The Intro page provides an overview and describes the motivation for the features described below. This page explains the most important APIs and
mechanisms of the property validation module provided by ExtVal. Please note that this page doesn't show all possibilities. If you have any question,

please contact the community!

Dependencies

The page ExtVal Modules provides an overview about ExtVal modules and how to add them to your project.

For using the features described in this page, you have to add the core and the property validation module for the JSF version you are using.

Hello-World examples

Setup

Required steps for using ExtVal:

* Download the required ExtVal jar-files or checkout the Source Code and build it. (details)
® Add these jar-files to your classpath (manually or via maven)
® Use the annotations (details)

That's it!

Simple validation

The sample page

The sample page

<U@taglib uri="http://java.sun.conljsf/htm" prefix="h" %
<U@taglib uri="http://java.sun.conljsf/core" prefix="f" %

<htm >
<head>

<title>Hello World!</title>

</ head>
<body>
<f:view>

<h: form i d="mai nFor n{ >
<h: panel Gid col ums="3">

<h:
<h:
<h:

<h:
<h:
<h:

out put Label for="nane" val ue="Pl ease enter your nane" />
i nput Text id="name" val ue="#{hel | oWrld. nane}" />
message for="name" showSunmmary="true" showDetail ="fal se" />

comrandBut t on val ue="Press nme" action="#{hell oWrld.send}" />
panel Group />
panel Group />

</ h: panel Gi d>
</ h: form

</f:view>

</ body>
</ htnm >

Note that there is no JSF validator in the page.

The sample bean

https://cwiki.apache.org/confluence/display/EXTVAL/Property+Validation+Overview
https://cwiki.apache.org/confluence/display/EXTVAL/Module+Overview
https://cwiki.apache.org/confluence/display/EXTVAL/Module+Overview#ModuleOverview-ModuleOverview-ExtValCoreModule(required)
https://cwiki.apache.org/confluence/display/EXTVAL/Module+Overview#ModuleOverview-ModuleOverview-PropertyValidationModule(optional)
https://cwiki.apache.org/confluence/display/EXTVAL/Module+Overview
http://jsfcentral.com/articles/myfaces_extval_2.html

Fragment of the HelloWorldController bean

public class Hell owrldController {

@Requi r ed

private String nang;

/] getters and setters omitted for brevity

The result

Please enter vour name |

Press me |

J

Pleaze enter vour natne | feld 15 recquired

Fress me |

As you can see, the field is not valid, as the @Requi r ed annotation causes the field to be required.

Cross validation

Usage of cross validation

public class Person {

@Not Equal s("1 ast Nane")
private String firstNane;

private String |astName;

/] Getters and setters onmtted for brevity

The rest is equivalent to the simple validation (just bind the properties to your input components). Note how we refer to the | ast Name property by simply
using the name of the property.

Available annotations

With the property validation module, there are two ways to define validation rules. The first is to (re)use JPA annotations, see #JPA based validation. The
second is to use ExtVal's simple validation annotations, see #Simple validation and #Cross-Validation.

JPA based validation

JPA annotations are used automatically for Ul validation as soon as you:

® Add myfaces-extval-core-.jar and myfaces-extval-property-validation-.jar to the classpath
® Use JPA annotations within the model (e.g.: @ol utm(nul | abl e = fal se) ->the field is required)

That's it!
The table below gives an overview of the validations that are generated, based on JPA annotations.

JPA Generated validation
Annotation

@Col umm

® Field will be required if nul | abl e == fal se.
® |f the field is a St ri ng and the col unms property is set on the @ol unm annotation, the maximum length of the St ri ng will be validated
accordingly.
@asi c Field will be required if opti onal == fal se.
@neTolne Field will be required if opti onal == fal se.
@anyToOne Field will be required if opti onal == fal se.
@d Field will be required.

(A simple demo is available here: demo_000)

Simple validation

Annotation Description

DoubleRange | delegates to the implementation of j avax. f aces. val i dat or . Doubl eRangeVal i dat or

JoinValidation | to reuse (point to) annotations of a different property (see re-use existing annotations)

Length delegates to the implementation of j avax. f aces. val i dat or. Lengt hVal i dat or
LongRange delegates to the implementation of j avax. f aces. val i dat or. LongRangeVal i dat or
Pattern use a regular expression for validation

Required alternative to the required attribute

SkipValidation = allows to keep validation optional. (the annotations which are afterwards and support this mechanism)

Validator generic validator to delegate validation to an existing jsf validator e.g.: @/al i dat or (Emai | Val i dat or . cl ass)

Cross-Validation

Annotation Description
Datels validates if a date is equal, before or after a second date
Equals validates if two values are equal
NotEquals validates if two values are different
RequiredlIf validates if a value is required depending on a second value (if it is empty or
not)
Emptylf opposite of @Requi r edl f

Existing/3rd party constraints

ExtVal has no special requirements for annotations. It's the responsibility of the validation strategy to know how to validate the annotation. So you can use
annotations within any layer without introducing an ExtVal dependency below the view layer. If you would like to validate 3rd party annotations you can
provide a mapping. With the same mechanism you can replace existing (ExtVal) validation strategies. Find detailed information below.

Custom annotations

Simple annotations
ExtVal provides the possibility to validate annotations with so called validation strategies.
The simplest case is to create a custom annotation and to use a name convention for the validator (= validation strategy). The validation strategy has to
implement the Val i dat i onSt r at egy interface. Or you can extend a class which implements this interface in-/directly. (A simple demo is available here: d
emo_002, demo_006)

1 Hint

If you don't like the default conventions, you can provide a custom name mapper, or you provide a mapping between annotations and the
validation strategies (via properties file or ExtVal Java API), or ...

http://code.google.com/p/os890/source/browse/#svn/trunk/java/web/jsf/extval/examples/basic/demo_000
http://os890.blogspot.com/2008/04/sev-en-preview-re-use-existing_07.html
http://code.google.com/p/os890/source/browse/#svn/trunk/java/web/jsf/extval/examples/advanced/demo_002
http://code.google.com/p/os890/source/browse/#svn/trunk/java/web/jsf/extval/examples/advanced/demo_002
http://code.google.com/p/os890/source/browse/#svn/trunk/java/web/jsf/extval/examples/advanced/demo_006

Minimal custom constraint

package ny.custom package
@ar get ({ METHOD, FIELD})

@Ret ent i on(RUNTI ME)
public @nterface CustonConstraint {

}

Note that this is just a minimalistic annotation definition. There's nothing ExtVal-specific here.

Minimal validation strategy implementation

package ny.custom package
public class CustonConstraintValidationStrategy inplenments ValidationStrategy {

public void validate(FacesContext facesContext, U Conponent ui Conponent,
Met aDat aEntry net aDat aEntry, Object convertedObject) {

//custom val idation |ogic

Note that only one method (val i dat e()) has to be implemented. The naming convention here is that the validation strategy has the same name as the
custom annotation, with Val i dat i onSt r at egy appended. The annotation and the validation strategy must also be in the same package.

That's just the simplest case. You can also use one of the other available name conventions or you can provide a custom convention or a custom name
mapper or ...

@ Hint
It's recommended to subclass Abst r act Val i dat or Adapt er or Abstract Annot ati onVal i dati onStr at egy rather than implementing
the Val i dat i onSt r at egy interface yourself.

@ In ExtVal r3+ validation strategies don't have to be aware of empty/null values. So it's safe to delegate to legacy JSF validators. If a validation
strategy should validate such values, it's possible to annotate the validation strategy with @\ul | Val ueAwar eVal i dat i onSt r at egy and/or @
npt yVal ueAwar eVal i dati onStr at egy.

Cross validation annotations

The class below implements the validation strategy for the @qual s annotation. Note that the class can be relatively simple, since the hard work is done
for us in the Abst r act Conpar eSt r at egy.

Custom cross-validation strategies

@Bki pVal i dat i onSupport
public class Equal sStrategy extends Abstract ConpareStrategy {

publ i c bool ean useTar get Conponent ToDi spl ayError Msg(CrossVal i dati onSt orageEntry crossVal i dati onSt or ageEntry)

{
return true;
}
protected String getValidati onError MsgKey(Annotati on annotation, bool ean i sTarget Conponent) {
return ((Equal s) annotation).validationErrorMgKey();
}
public bool ean isViolation(Object objectl, Cbject object2, Annotation annotation) {
return objectl != null && !objectl. equal s(object?2);
}
public String[] getValidationTargets(Annotation annotation) {
return ((Equal s) annotation).value();
}
}

@ Hint
Be aware that the i sVi ol ati on() method should return t r ue if the input values are not valid (not equal in this case). Although the name of
the method is very clear, you might have expected the opposite.

In case of model aware cross-validation the validation error message is displayed at the source component instead of the target component. Since the
message is still meaningful, there's no need to provide a special reverse message. (This can be changed by returning f al se in the useTar get Conponen
t ToDi spl ayError Msg() method.

Cross validation details

As we've seen before, we can easily reference a property within the same bean by using the property name.

Referencing a local property

public class Person

{
@Not Equal s("1 ast Nane")
private String firstNanme;
private String |astNang;
}

We can also refer to properties of related beans, as is shown in the example below:

Referencing a property of a local reference

public class RegistrationPage

{

private Person person = new Person();

@qual s(" person. password")
private String ol dPassword;

It is even possible to use EL-like expressions to refer to properties of beans that will be available at runtime.

Referencing a property of a bean

public class RegistrationPage

{
@tqual s("#{person. password}")
private String ol dPasswor d;

1 Be Careful

You should realize that by referencing bean properties, you may be introducing a dependency of the View-layer.

Details of the examples

Within the page you just have to bind a property which has a cross-validation constraint.
If both, the source property as well as the referenced target, are bound to input components of the same form, the converted objects are used for
validation. In case of a validation error, the validation error message(s) is/are displayed.

Model aware cross-validation (since 1.x.2)

If the target of the cross-validation isn't bound to an input component of the same form, the model value of the target is used for validation. The property
which triggers the cross-validation always "uses" the converted object (not the model value).

That means:

® Normal cross-validation: converted object (constraint source) + converted object (constraint target)
® Model aware cross-validation: converted object (constraint source) + model object (constraint target)

Reverse validation error messages

In case of model aware cross-validation the following issues are possible:

® Missing "target component” to display validation error message
® Inconsistent validation messages (the message is automatically displayed at the "source component", but the default message makes no sense
for the user)

Solution: The validation strategy optionally provides a meaningful validation error message. It's called a reverse validation error message.

Example

@verride
protected String getReverseError MessageSumar y(Annot ati on annot at i on)

{

return "neani ngful validation error nessage summary";

}

@verride
protected String get ReverseError MessageDet ai | (Annot ati on annot ati on)

{

return "meani ngful validation error nmessage details";

}

... override these methods to display a meaningful reverse validation message at the source component.

Conditional validation via cross-validation

Conditional validation is possible e.g. via @ki pVal i dat i on - that works if the condition is already available before the current request.
It might be interesting to validate constraints based on a condition which is available with the same request.

The group validation concept available via BV as well as via a possible add-on for ExtVal-Constraints (a simple example is available at demo of group
validation light) might already solve your requirements.

If you prefer a style which directly uses JSF mechanisms, you can also use cross-validation for it. The validation target can be used as condition.

It's possible since the first version of ExtVal. Due to new features introduced in the 3rd release of ExtVal you will see additional things in the example you
might not have seen so far. However, they aren't required since the approach just uses the mechanism of cross-validation.:

Custom cross-validation annotation

@rar get ({ METHOD, FI ELD})

@Ret ent i on(RUNTI ME)

@ocunent ed

@Jsagel nf or mat i on(UsageCat egory. APl)
public @nterface ValidateLengthlf

{ String[] validatelf();

int mninmn() default O;

int maxi mun() default |nteger. MAX_VALUE;

Cl ass<? extends Validati onParaneter>[] paraneters() default ViolationSeverity.Error.class;
}

Custom cross-validation strategy

@ki pVal i dat i onSupport
public class ValidateLengthlfValidationStrategy extends Abstract ConpareStrategy<Vali datelLengthlf>

{
private U Conponent conponent;
private FacesMessage facesMessage;
@verride
protected void initCrossValidation(CrossValidationStorageEntry crossValidationStorageEntry)
{
this. conponent = crossValidati onStorageEntry. get Conponent ();
}
public bool ean isViolation(Object source, Chject target, ValidatelLengthlf annotation)
{
i f (Bool ean. TRUE. equal s(target))
{
try
{
Lengt hVal i dator | engthValidator = resol veLengthValidator();
| engt hVal i dat or. set M ni nun(annot ati on. mi ni mum());
| engt hVal i dat or . set Maxi nun{ annot at i on. maxi num());
I engt hval i dat or . val i dat e(FacesCont ext . get Current | nstance(), this.conponent, source);
}
catch (Validator Exception e)
{
this.facesMessage = e. get FacesMessage();
return true;
}
}
return false;
}
private LengthValidator resol veLengthVali dator ()
{
return (LengthVali dator) FacesCont ext. get Currentlnstance()
.getApplication().createValidator("javax.faces.Length");
}
public String[] getValidationTargets(ValidateLengthlf annotation)
{
return annotation.validatelf();
}
@verride
publ i c bool ean useTar get Conponent ToDi spl ayError Msg(CrossVal i dati onSt orageEntry crossVal i dati onSt orageEntry)
{
return fal se;
}
@verride
protected String getErrorMessageSunmary(Val i dat eLengthlf annotation, bool ean isTarget Conponent)
{
return this.facesMessage. get Summary();
}
@verride
protected String getErrorMessageDetail (ValidateLengthlf annotation, bool ean i sTarget Conponent)
{
return this.facesMessage.getDetail ();
}
protected String getValidati onError MsgKey(ValidateLengthlf annotation, bool ean isTarget Conponent)
{
/lfor using the nessage of the std. validator instead of a cross-validation-key for extval nessage
resol vi ng

return null;

}

Provide/replace validation strategy mappings

If you don't like to use the name mapping concept, you can provide static mappings between annotations and validation strategies.

Use the convention for a mapping file (or g. apache. nyf aces. ext ensi ons. val i dat or. cust om strat egy_nappi ngs. properties) (it's
customizable)

or use the ExtVal Java API:

Register a resource-bundle file which contains an annotation/validation strategy mapping:

Alternative config approach via a property file

Stati cConfiguration<String, String> staticConfig = new StaticResourceBundl eConfiguration();
staticConfig. set SourceOf Mappi ng("[cust om package + nane of the properties file.]1");

Ext Val Cont ext . get Cont ext (). addSt ati cConfigurati on(StaticConfigurationNanes.
META_DATA_TO _VALI DATI ON_STRATEGY_CONFI G, stati cConfig);

It's also used internally to provide the JPA based validation support. So you can find an example at the Pr oper t yVal i dati onModul eSt ar t upLi st ener
A similar approach is used internally by the annotation based config extension

This approach is more typesafe - a simple example:

Alternative config approach which manual mapping

Staticl nMenoryConfiguration staticConfig = new StaticlnMenoryConfiguration();

staticConfig. addMappi ng(Cust onConstrai nt. cl ass. get Nane(), CustonValidator.cl ass.getNanme());
Ext Val Cont ext . get Cont ext (). addSt ati cConfiguration(StaticConfigurationNanes.
META_DATA_TO VALI DATI ON_STRATEGY_CONFI G, stati cConfig);

@ Hint

If you also don't like the approach above, you can implement your own Val i dat i onSt r at egyFact ory to introduce your own concept.

I18N support

see Internationalization

Spring support
It's possible to provide a validation strategy as Spring bean.
Use-cases:

® |nject a Spring bean into the validation strategy
® AOP exception handling
L]

http://code.google.com/p/os890/source/browse/#svn/trunk/java/web/jsf/extval/annotation_based_config/core
https://cwiki.apache.org/confluence/display/EXTVAL/Internationalization

Spring based dependency injection support for validation strategies

<!-- The nane of annotation: @ustonRequired -->

<!-- Part of the Spring configuration: -->
<bean i d="custonRequi redVal i dati onStrategy" class="..." lazy-init="true">
<property name="nessageResol ver" ref="custonvsgResol ver"/>
<property name="requiredVal i dationService" ref="denoRequiredValidationService"/>
</ bean>

<bean i d="cust onmvsgResol ver"

cl ass="org. apache. nyf aces. ext ensi ons. val i dat or. core. val i dati on. message. r esol ver.
Def aul t Val i dat i onErr or MessageResol ver"

lazy-init="true">

<l-- Wth JSF 1.2 you can use the var nane of resource-bundl e see faces-config.xm -->
<property name="nessageBundl| eVar Name" val ue="nessages"/>

</ bean>

<bean i d="denmoRequiredVal i dati onServi ce" class="..."/>

The bean name follows the available name conventions.
(Also custom name conventions are supported.)

A simple demo is available here: demo_106

Furthermore, it's possible to provide a Meta-Data Transformer as Spring bean.

Constraint Aspects

Since r3 ExtVal uses the concept of constraint aspects for generic validation parameters (in case of bean-validation it's a subset which is called validation p
ayload).

Available constraint aspects
® ViolationSeverity

® DisableClientSideValidation
® Caselnsensitive

Mapped Constraint Source

The concept is similar to @oi nVal i dat i on. However, this version is more type-save and it is supported by the property- as well as the bean-validation
module.

Since both modules support the same syntax you will find further information here.

http://code.google.com/p/os890/source/browse/#svn/trunk/java/web/jsf/extval/examples/advanced/demo_106
https://cwiki.apache.org/confluence/display/EXTVAL/Mapped+Constraint+Source+Usage

	Property Validation Usage

