
SpEL

Spring Expression Language (SpEL)

Available as of Camel 2.7

Camel allows to be used as an or in the or .SpEL Expression Predicate DSL Xml Configuration

Variables

The following variables are available in expressions and predicates written in SpEL:

Variable Type Description

this Exchange the Exchange is the root object

exchange Exchange the Exchange object

exception Throwabl
e

the Exchange exception (if any)

exchangeId String the exchange id

fault Message the Fault message (if any)

body Object The IN message body.Camel 2.11:

request Message the exchange.in message

response Message the exchange.out message (if any)

properties Map the exchange properties

property(name) Object the property by the given name

property(name,
type)

Type the property by the given name as the given
type

Samples

Expression templating

SpEL expressions need to be surrounded by delimiters since expression templating is enabled. This allows you to combine SpEL expressions with #{ }
regular text and use this as extremely lightweight template language.

For example if you construct the following route:

from("direct:example").setBody(spel("Hello #{request.body}! What a beautiful #{request.headers
['dayOrNight']}")).to("mock:result");

In the route above, notice spel is a static method which we need to import from , as we org.apache.camel.language.spel.SpelExpression.spel
use spel as an passed in as a parameter to the method. Though if we use the fluent API we can do this instead:Expression setBody

from("direct:example").setBody().spel("Hello #{request.body}! What a beautiful #{request.headers
['dayOrNight']}").to("mock:result");

Notice we now use the method from the method. And this does not require us to static import the spel method from spel setBody() org.apache.
.camel.language.spel.SpelExpression.spel

And sent a message with the string "World" in the body, and a header "dayOrNight" with value "day":

template.sendBodyAndHeader("direct:example", "World", "dayOrNight", "day");

The output on will be mock:result "Hello World! What a beautiful day"

Bean integration

http://static.springsource.org/spring/docs/current/spring-framework-reference/htmlsingle/spring-framework-reference.html#expressions
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Expression

You can reference beans defined in the (most likely an) in your SpEL expressions. For example if you have a bean Registry ApplicationContext
named "foo" in your you can invoke the "bar" method on this bean like this:ApplicationContext

#{@foo.bar == 'xyz'}

SpEL in enterprise integration patterns

You can use SpEL as an expression for or as a predicate inside a :Recipient List Message Filter

<route>
 <from uri="direct:foo"/>
 <filter>
 <spel>#{request.headers['foo'] == 'bar'}</spel>
 <to uri="direct:bar"/>
 </filter>
</route>

And the equivalent in Java DSL:

 from("direct:foo").filter().spel("#{request.headers['foo'] == 'bar'}").to("direct:bar");

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as , , or ."classpath:" "file:" "http:"
This is done using the following syntax: , eg to refer to a file on the classpath you can do:"resource:scheme:location"

.setHeader("myHeader").spel("resource:classpath:myspel.txt")

Dependencies

You need Spring 3.0 or higher to use Spring Expression Language. If you use Maven you could just add the following to your :pom.xml

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-spring</artifactId>
 <version>xxx</version>
 <!-- use the same version as your Camel core version -->
</dependency>

https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter

	SpEL

