
KIP-987: Connect Static Assignments

Status
Motivation
Public Interfaces

Choosing static assignments
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Test Plan
Rejected Alternatives

Model per-job resource constraints and measure resource utilization within a shared JVM
Spawn additional JVM processes attached to a single worker for individual connectors and tasks
Replace the existing scheduling algorithm with a "weighted" algorithm using weights as a proxy for resource utilization.
Implement a more complex Worker Selector/taint/affinity system like Kubernetes
Accept static assignments via REST API instead of or in addition to specifying static assignments in the worker config
Implement this as an alternative to Distributed mode which disables mutability of the worker via REST API
Isolate ephemeral jobs in addition to persistent jobs

Status
Current state: Under Discussion

Discussion thread: here

JIRA: here

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Connect runs Connectors and Tasks, each is a "job", and all together form the "workload". In the standalone model, one worker handles the complete
workload. In the distributed model, the workload is shared among several workers in the cluster, using a scheduling algorithm to assign each job to a host
worker. Currently there are two scheduling algorithms:

The protocol, uses unweighted, round-robin scheduling. This means that each job is given equal weight, and at each rebalance, the work eager
is distributed to the workers by sending the piece of work to the worker. For a specific workload and cluster size, this assignment k-th k%n-th
is deterministic.
The compatible and protocols use unweighted, minimum-disruption scheduling. This means that each job is given equal weight, sessioned
and at each rebalance, the work is distributed to workers by performing a minimum number of revocations and assignments relative to the
existing assignment. For a specific workload and cluster size, this assignment is non-deterministic.

These algorithms perform well when both the workload and cluster are homogeneous, where each job consumes similar resources, and each worker
provides equivalent resources. However, workloads in Connect are often heterogeneous, which cause these algorithms perform poorly. For example:

Connectors typically consume less resources than even a single task of the same connector.
Tasks with different plugins/implementations can have different resource usage profiles (high-memory vs high-cpu vs high-io)
Tasks with different configurations can have different resource usages (such as buffer/linger/etc configurations)
Tasks for the same configuration may distribute their workload unequally by design or by necessity

In all of these situations, the different jobs do not consume similar resources, and so the unweighted algorithms currently available can cause hot-spots to
appear in the cluster when multiple high-consumption jobs are assigned to the same worker. Additionally in the protocol, these hot-spots compatible
appear non-deterministically and can be difficult to remediate.

In order to manage these hot-spots, it is necessary to change the scheduling algorithm to take these constraints into account. But Connect is not situated
to be able to manage resources directly, as the shared-JVM model does not permit strong isolation between threads.

If instead each job can be assigned to it's own worker, resource constraints can be specified at the process-boundary. Existing tooling for managing
process resources can monitor and enforce resource utilization for that job by enforcing them on the worker containing that job. In order to make this
possible, Connect should provide a mechanism for the user or management layer to assign jobs to specific workers, and a scheduling algorithm that
respects these assignments.

This feature is written to be generic, such that it is usable manually and by any management system that users already use. To aid adoption and make this
feature more functional for users on release, describes how this feature could be used to provide a resource-A sister proposal to the Strimzi project
isolated cluster with a convenient user experience and upgrade story.

Public Interfaces
Workers will accept a new , which is backwards-compatible with and will be the new default.connect.protocol static sessioned

Workers will accept two new optional configurations, collectively known as the "static assignments":

https://lists.apache.org/thread/1y9hqj9dlyb0o3s728lx9qzldzhwlbcj
https://issues.apache.org/jira/browse/KAFKA-15559
https://github.com/strimzi/proposals/pull/96

1.
2.

3.
4.
5.
6.
7.

8.

static.connectors A list of connector names (e.g. connector-name) which are allowed to be executed by this node

static.tasks A list of task ids (e.g. connector-name-0) which are allowed to be executed by this node

If static assignments are not specified, or at least one worker in the cluster is not using the protocol, they are ignored and the worker may receive static
an arbitrary assignment.

If a job is specified in the static assignments does not exist, it will be ignored. A for a connector may be specified without a corresponding static.tasks
 .static.connectors

Choosing static assignments

Users and management frameworks are expected to choose the values for these configurations with knowledge of their workload (i.e. set of connectors
and tasks).

The workload can be read from the and endpoints, which reveals both the set of connector IDs GET /connectors GET /connectors/{connector}
and task IDs. For closed-loop control, these endpoints should be polled regularly to discover changes in the number of tasks requested by each connector.

Alternatively if a fixed set of workers is desirable, the set of connectors and tasks can be inferred from the connector configurations alone. Each connector
will provision at most tasks, so workers for all of the tasks can be provisioned ahead-of-time. This has the downside that connectors which tasks.max
spawn fewer than the maximum number of tasks may receive static assignments for jobs which don't exist, possibly leaving some static workers idle.

For a new cluster without any connectors, a worker may be started with an empty assignment, assignments for the first connector to be created if they are
known in advance, or an unsatisfiable assignment if they are not known. For subsequent connectors, the connector can be created before, during, or after
static workers for that connector are added.

Proposed Changes
If the connect.protocol is set to static, each worker will send it's and to the coordinator during rebalances.static.connectors static.tasks

The leader will perform the following assignment algorithm if all members of the cluster support the protocol.static

Categorize workers with static assignments as "static workers" and those without as "wildcard workers".
Categorize connectors and tasks that are included in at least one static assignment are "static jobs", and those not included in any as "wildcard
jobs".
Revoke any static jobs running on wildcard workers
Revoke any static jobs running on static workers which do not specify that job.
Revoke any wildcard jobs running on static workers.
Assign each unassigned static job to a static worker which specifies that job, choosing arbitrarily if there are multiple valid workers.
Revoke wildcard jobs from wildcard workers following the least-disruption algorithm assuming that all wildcard jobs (assigned or not) must
eventually be evenly distributed among the wildcard workers.
Assign each unassigned wildcard job to a wildcard worker which is least loaded.

Note that the final two steps are the algorithm followed by the existing Incremental Cooperative Assignor, but limited in scope to the wildcard jobs &
wildcard workers.

This has the properties that:

A heterogeneous-protocol cluster, (with both and protocol in-use), will still require workers with static assignments to run sessioned static
arbitrary assignments, as the leader may not support the protocol. This preserves backwards-compatibility & rolling upgrades.static
A protocol cluster with no static workers behaves identically to the protocol. This makes the static assignment feature opt-in static sessioned
even if the protocol is automatically upgraded by default.
A cluster with both static and wildcard workers can be used in an ad-hoc manner to isolate specific jobs in a shared cluster.

Disruptive jobs may be given a separate worker to lessen interruptions to other jobs
Jobs may be temporarily given a static worker for additional instrumentation (debugging/metrics/etc)
Connector instances may be assigned to a static worker to improve round-robin balance of tasks among the wildcard workers

A cluster with both static and wildcard workers can use wildcard workers as backups for disaster recovery.
A cluster with both static and wildcard workers can be an intermediate state during a rolling upgrade to a cluster with only static workers.
A cluster with only static workers can completely replace the internal unweighted scheduler with custom scheduling which includes resource
usage estimates and heterogeneous workers.
A cluster with only static workers can specify single tasks/connectors per worker to provide process and resource isolation between jobs.

Compatibility, Deprecation, and Migration Plan
After finishing an upgrade to a version which supports the Static Assignments feature, workers can individually be given assignments.

If used in an ad-hoc manner, workers can be added to the cluster with a static assignment. If that additional worker then goes offline, the job will
migrate back to the wildcard workers.
If migrating to a cluster with only static workers, static workers can be added until the wildcard workers are drained, and then the wildcard workers
can be removed.

Downgrading to a version which does not support the protocol will cause any static assignments to be ignored, so they can be safely left in-place static
during a temporary downgrade if necessary.

Test Plan
System tests will test the rolling update flow:

Begin with an or clustereager,compatible, sessioned
Create multiple connectors with multiple tasks
Roll the cluster to and confirm that data flow continuesstatic
Add a static worker with a static connector assignment
Add a static worker with a static task assignment
Add a static worker with duplicate connector and task assignments
Remove a wildcard worker
Add remaining necessary static workers to cover all connectors and tasks
Remove remaining wildcard workers

Rejected Alternatives

Model per-job resource constraints and measure resource utilization within a shared JVM

Measuring and enforcing resource constraints is not practical when multiple jobs share the JVM, as it is difficult to track which threads, memory, and I/O
are used by each job. Without the ability to measure or enforce these constraints as hard limits, misconfigured resource limits would be difficult to track
down as resource exhaustion on a single worker could not be easily attributed to a single job.

Spawn additional JVM processes attached to a single worker for individual connectors and tasks

This has the benefits of preserving the ability to assign multiple pieces of work to a single worker, while getting JVM isolation between connectors and
tasks.

However, this separates the lifetime of the connectors and tasks, and leaves the possibility of a connector or task running while being completely out of
sight of the rest of the cluster. Similar bugs within the current single-JVM model have been very harmful, and so the opportunity for such bugs should be
avoided.

Replace the existing scheduling algorithm with a "weighted" algorithm using weights as a proxy for resource utilization.

This doesn't allow for an external system to correlate the resource utilization of a worker process to a job, without installing a contrived series of weights
that force the algorithm to perform a static assignment. Abstract weights are also difficult to reason about, and may diverge from the resource constraints
they are meant to model if there is no way to compare an abstract weight to a real utilization.

Implement a more complex Worker Selector/taint/affinity system like Kubernetes

It is possible to apply "labels" to a worker, and then have the connector/task "select" the labels which it requires it's hosting worker to have. Such a system
would be extensible to arbitrary heterogeneity in clusters (plugin versions, resource availability, secrets, etc) without the need to use Kubernetes directly.

However, because tasks within a single connector can be heterogeneous, it is necessary to attach a different selector/affinity declaration to each task. But
because tasks are dynamically created by the connector, either every task's selector must be added manually after defaulting to a wildcard affinity, or the
Connect REST API would need a way to template multiple task affinities (parameterized by task-id). It felt more natural for a management layer to read the
number of tasks that were dynamically created, and then start workers with corresponding static assignments.

Static Assignments and Worker Selectors have equal expressiveness when using Kubernetes, but Worker Selectors would be more expressive when
running bare clusters. Worker selectors are more complex and bug-prone, and already implemented well in Kubernetes, so it would be more appropriate to
encourage users to compose the tools rather than import a feature.

Accept static assignments via REST API instead of or in addition to specifying static assignments in the worker config

If only the REST API could set static assignments, this would require an additional configuration to distinguish static workers with empty static assignments
from wildcard workers. This would allow clusters with only static workers to disable wildcard workers entirely. More importantly, persisting the assignments
so that subsequent restarts get the same assignment requires persisting the worker identifier (id, hostname, etc) in the config topic, which will not be
effective if the identifier changes between restarts. If the identifier regularly changes, a static worker will need to wait for a REST API call to install an
assignment before being able to start work.

If both the worker config and REST API could set static assignments, this would cause the runtime configuration of the worker to diverge from the worker
config. This divergence would then go away after a restart, (similar to the /admin/loggers API) which is not appropriate for a configuration that significantly
changes the behavior of the worker.

Implement this as an alternative to Distributed mode which disables mutability of the worker via REST API

This represents a much larger investment, and has a much more difficult upgrade path for users of the Distributed deployment model, as it would require
migrating connectors between Connect clusters. It also would require re-examining many of the abstractions used in Distributed mode, such as the config
topic, connector config forwarding, zombie worker fencing, etc. Implementing an opt-in extension to Distributed mode which can force jobs to exclusively
reside on certain nodes is much smaller incremental change, but still empowers users and external management layers to solve the resource isolation
problems which are most painful.

Isolate ephemeral jobs in addition to persistent jobs

The Connect framework performs a number of ephemeral jobs using plugins, such as configuration validation and offsets resetting, version gathering, etc.
These happen on whatever worker needs the information, most commonly the worker servicing a REST request or the leader of the cluster.

Because any worker can be expected to service any REST request, and any worker can become the leader, isolating these ephemeral jobs to specific
nodes is not practical, and would require significant changes to the framework, such as the additional-process model or a change in request forwarding or
leadership.

	KIP-987: Connect Static Assignments

