
JumpStart Demos:
Total Control Object Select
ID Select
Easy ID Select

Using Select With a List

Meta-Programming Page Content Cookbook IoC cookbook

Using Select With a List
The documentation for the and the provide simplistic examples of populating a drop-down menu (as the (X)HTML Select Component Tapestry Tutorial Sele

 element) using comma-delimited strings and enums. However, most real-world Tapestry applications need to populate such menus using values from a ct
database, commonly in the form of java.util.List objects. Doing so generally requires a and a bound to the Select component SelectModel ValueEncoder
with its "model" and "encoder" parameters:

<t:select t:id="colorMenu" value="selectedColor" model="ColorSelectModel" encoder="colorEncoder" />

In the above example, ColorSelectModel must be of type SelectModel, or anything that Tapestry knows how to into a SelectModel, such as a List or coerce
a Map or a "value=label,value=label,..." delimited string, or anything Tapestry knows how to coerce into a List or Map, such as an Array or a comma-
delimited String.

SelectModel

A SelectModel is a collection of options (specifically objects) for a drop-down menu. Basically, each option OptionModel
is a value (an object) and a label (presented to the user).

If you provide a property of type List for the "model" parameter, Tapestry automatically builds a SelectModel that uses
each object's toString() for both the select option value and the select option label. For database-derrived lists this is rarely useful, however, since after
form submission you would then have to look up the selected object using that label.

If you provide a Map, Tapestry builds a SelectModel that uses each item's key as the encoded value and its value as the user-visible label. This is more
useful, but if you are going to build a copy of the list as a map just for this purpose, you may as well let Tapestry do it for you, using SelectModelFactory.

SelectModelFactory

To have Tapestry create a SelectModel for you, use the service. SelectModelFactory creates a SelectModel from a List of objects (of SelectModelFactory
whatever type) and a label property name that you choose:

SelectWithListDemo.java (a page class)

@Property
private SelectModel colorSelectModel;
@Inject
SelectModelFactory selectModelFactory;
...
void setupRender() {
 // invoke my service to find all colors, e.g. in the database
 List<Color> colors = colorService.findAll();

 // create a SelectModel from my list of colors
 colorSelectModel = selectModelFactory.create(colors, "name");
}

The resulting SelectModel has a selectable option (specifically, an OptionModel) for every object in the original List. The label property name (the "name"
property, in this example) determines the user-visible text of each menu option, and your ValueEncoder's toClient() method provides the encoded value
(most commonly a simple number). If you don't provide a ValueEncoder, the result of the objects' toString() method (Color#toString() in this example) is
used. Although not a recommended practice, you set your toString() to return the object's ID for this purpose:could

https://tapestry-jumpstart.org/jumpstart/examples/select/totalcontrolobject
https://tapestry-jumpstart.org/jumpstart/examples/select/id
https://tapestry-jumpstart.org/jumpstart/examples/select/easyid
https://cwiki.apache.org/confluence/display/TAPESTRY/Meta-Programming+Page+Content
https://cwiki.apache.org/confluence/display/TAPESTRY/Meta-Programming+Page+Content
https://cwiki.apache.org/confluence/display/TAPESTRY/Cookbook
https://cwiki.apache.org/confluence/display/TAPESTRY/Cookbook
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+cookbook
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+cookbook
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/corelib/components/Select.html
https://cwiki.apache.org/confluence/display/TAPESTRY/Tapestry+Tutorial
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/SelectModel.html
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/ValueEncoder.html
https://cwiki.apache.org/confluence/display/TAPESTRY/Parameter+Type+Coercion
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/OptionModel.html
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/services/SelectModelFactory.html

JumpStart Demo:
Easy Object Select

Color.java (partial)

...
@Override
public String toString() {
 return String.valueOf(this.getId());
}

But that is contorting the purpose of the toString() method, and if you go to that much trouble you're already half way to the recommended practice:
creating a ValueEncoder.

ValueEncoder

In addition to a SelectModel, your Select menu is likely to need a ValueEncoder. While a SelectModel is concerned only with how to construct a Select
menu, a ValueEncoder is used when constructing the Select menu when interpreting the encoded value that is submitted back to the server. A and
ValueEncoder is a converter between the type of objects you want to represent as options in the menu and the client-side encoded values that uniquely
identify them, and vice-versa.

Most commonly, your ValueEncoder's toClient() method will return a unique ID (e.g. a database primary key, or perhaps a
UUID) of the given object, and its toValue() method will return the matching the given ID by doing a database lookup object
(ideally using a service or DAO method).

If you're using one of the ORM integration modules (, , or), the ValueEncoder is automatically provided Tapestry-Hibernate Tapestry-JPA Tapestry-Cayenne
for each of your mapped entity classes. The Hibernate module's implementation is typical: the primary key field of the object (converted to a String) is used
as the client-side value, and that same primary key is used to look up the selected object.

That's exactly what you should do in your own ValueEncoders too:

ColorEncoder.java (perhaps in your com.example.myappname.encoders package)

public class ColorEncoder implements ValueEncoder<Color>, ValueEncoderFactory<Color> {

 @Inject
 private ColorService colorService;

 @Override
 public String toClient(Color value) {
 // return the given object's ID
 return String.valueOf(value.getId());
 }

 @Override
 public Color toValue(String id) {
 // find the color object of the given ID in the database
 return colorService.findById(Long.parseLong(id));
 }

 // let this ValueEncoder also serve as a ValueEncoderFactory
 @Override
 public ValueEncoder<Color> create(Class<Color> type) {
 return this;
 }
}

Alternatively, if you don't expect to need a particular ValueEncoder more than once in your app, you might want to just create it on demand, using an
anonymous inner class, from the getter method in the component class where it is needed. For example:

https://tapestry-jumpstart.org/jumpstart/examples/select/easyobject
https://cwiki.apache.org/confluence/display/TAPESTRY/Hibernate
https://cwiki.apache.org/confluence/display/TAPESTRY/Integrating+with+JPA
http://code.google.com/p/tapestry5-cayenne/wiki/ValueEncoder

SelectWithListDemo.java (a page class, partial)

 . . .

 public ValueEncoder<Color> getColorEncoder() {

 return new ValueEncoder<Color>() {

 @Override
 public String toClient(Color value) {
 // return the given object's ID
 return String.valueOf(value.getId());
 }

 @Override
 public Color toValue(String id) {
 // find the color object of the given ID in the database
 return colorService.findById(Long.parseLong(id));
 }
 };
 }

Notice that the body of this anonymous inner class is the same as the body of the ColorEncoder top level class, except that we don't need a create
method.

Applying your ValueEncoder Automatically

If your ValueEncoder (as the ColorEncoder top level class does, above), you can associate your custom ValueEncoder implements ValueEncoderFactory
with your entity class so that Tapestry will automatically use it every time a ValueEncoder is needed for items of that type (such as with the Select,
RadioGroup, Grid, Hidden and AjaxFormLoop components). Just add lines like the following to your module class (usually AppModule.java):

AppModule.java (partial)

...
 public static void contributeValueEncoderSource(MappedConfiguration<Class<Color>,
 ValueEncoderFactory<Color>> configuration) {
 configuration.addInstance(Color.class, ColorEncoder.class);
 }

If you are contributing more than one ValueEncoder, you'll have to use raw types, like this:

AppModule.java (partial)

...
 public static void contributeValueEncoderSource(MappedConfiguration<Class,
 ValueEncoderFactory> configuration)
 {
 configuration.addInstance(Color.class, ColorEncoder.class);
 configuration.addInstance(SomeOtherType.class, SomeOtherTypeEncoder.class);
 }

What if I omit the ValueEncoder?

The Select component's "encoder" parameter is optional, but if the "value" parameter is bound to a complex object (not a simple String, Integer, etc.) and
you don't provide a ValueEncoder with the "encoder" parameter (and one isn't provided automatically by, for example, the Tapestry Hibernate integration),
you'll receive a "Could not find a coercion" exception (when you submit the form) as Tapestry tries to convert the selected option's encoded value back to
the in your Select's "value" parameter. To fix this, you'll either have to 1) provide a ValueEncoder, 2) provide a , or 3) use a simple value object Coercion
(String, Integer, etc.) for your Select's "value" parameter, and then you'll have to add logic in the corresponding onSuccess event listener method:

https://cwiki.apache.org/confluence/display/TAPESTRY/Type+Coercion

SelectWithListDemo.tml (partial)

<t:select t:id="colorMenu" value="selectedColorId" model="ColorSelectModel" />

SelectWithListDemo.java (partial)

...
 public void onSuccessFromMyForm() {
 // look up the color object from the ID selected
 selectedColor = colorService.findById(selectedColorId);
 ...
 }

But then again, you may as well create a ValueEncoder instead.

Why is this so hard?

Actually, it's really pretty easy if you follow the examples above. But why is Tapestry designed to use SelectModels and ValueEncoders anyway? Well, in
short, this design allows you to avoid storing (via @Persist, @SessionAttribute or @SessionState) the entire (potentially large) list of objects in the session
or rebuilding the whole list of objects again (though only one is needed) when the form is submitted. The chief benefits are reduced memory use and more

 due to having far less HTTP session data to replicate across the nodes of a cluster.scalable clustering

https://cwiki.apache.org/confluence/display/TAPESTRY/Performance+and+Clustering
https://cwiki.apache.org/confluence/display/TAPESTRY/Performance+and+Clustering

	Using Select With a List

