
Roadmap
Before adding to the list below, please check to see if a ticket has already been opened for the feature. If not, please open a ticket on the JIRA Hive JIRA
and also update the following list.

Features to be added

Major Recent Changes

Table Statistics
Archiving
Indexing First Cut
Concurrency
Conversion to Map-Join at Runtime
Support for Multiple Distincts
Remove Partition Filtering Conditions
INSERT INTO statement
Block-level merge
HAVING clause support
Cross-database queries
Bitmap Index
Use Filter Pushdown for Automatically Accessing Indexes
Remove Duplicate Filters
Authentication
Authorization

Current Projects

Bloom Filters
TIMESTAMP data type

Up For Grabs

Priorities are denoted as P0 > P1 > ...

Query Optimization

P0 Optimizing JOIN followed by GROUP BY
A lot of analytics queries are JOINs followed by GROUP BY (join keys and group by keys may or may not be the same or related). We
need a better optimization for this kind of query (optimize number of MapReduce Jobs vs. optimize data transfer size etc.)

P0 Optimize JOINs using Bloom Filters
This is to optimize the case where two big tables are joined but the results are small.

P1 Column-level statistics
We already have UDAFs for percentile, histogram etc. We need to figure out a smart way to compute column-level (approximate) stats in
a streaming fashion (during/piggy-backing the scan/loading data process) without firing a new query.

P1 Determining whether to use skew for a count distinct in group by
Need column level stats or a sample task before the real query.

P1 Exploit clustering information in the input data
Some data are generated using 'GROUP BY', 'CLUSTER BY', 'ORDER BY' etc. that implicit ordering in the data. We should exploit this
metadata to do better join in choosing joins (e.g., map-side sort-merge join).

Cost-based Optimization

Query Execution
P0 Native Support for types of numbers, datetime, and IP addresses

Currently most numbers, datetimes, and IP addresses are treated as strings. If we know their data types we should store these data
types in a more effective manner (see also "Binary Storage and SerDe").

P0 Create a URL data type that is more friendly to data compression.
URLs are very long and can contribute to large portion of storage. They are treated as generic strings and use string compression
algorithms. We should investigate if there are ways to treate URL data types in a clever way so that the compression algorithm (may be
a customized compression algorithm) can compress the data better in small enough overhead.

P1 Binary storage format and SerDe
The idea is to store data in their native format (rather than converting to UTF-8 string type) before stored on disk. This can potentially
save a lot of CPU/IO cost in data conversion and object creations.
Also investigating the compression technics used in other column-stores that does not require decompression before query (filtering).
Revisit the LazyBinarySerDe and see if they can be reused or extended to this storage format.
Make this storage format amenable to mmap() (or FileChannel in Java) so that the system can skip I/O if memory random access can
skip part of data (e.g., columns)

Support for IN, exists and correlated subqueries
More native types - Enums, timestamp
Persistent UDF's
SQL/OLAP
Storage handler improvements

https://issues.apache.org/jira/browse/HADOOP/component/12312455
http://issues.apache.org/jira/browse/HIVE
https://issues.apache.org/jira/browse/HIVE-33
https://issues.apache.org/jira/browse/HIVE-1299
https://issues.apache.org/jira/browse/HIVE-417
https://issues.apache.org/jira/browse/HIVE-1293
https://issues.apache.org/jira/browse/HIVE-1642
https://issues.apache.org/jira/browse/HIVE-474
https://issues.apache.org/jira/browse/HIVE-1750
https://issues.apache.org/jira/browse/HIVE-306
https://issues.apache.org/jira/browse/HIVE-2035
https://issues.apache.org/jira/browse/HIVE-1790
https://issues.apache.org/jira/browse/HIVE-1517
https://issues.apache.org/jira/browse/HIVE-1803
https://issues.apache.org/jira/browse/HIVE-1644
https://issues.apache.org/jira/browse/HIVE-1538
https://issues.apache.org/jira/browse/HIVE-842
https://issues.apache.org/jira/browse/HIVE-78
https://issues.apache.org/jira/browse/HIVE-1721
https://issues.apache.org/jira/browse/HIVE-2272
#
#
#
#
#
#
#
#

System views
JDBC/ODBC improvements
mapred to mapreduce transition (no longer needed since mapred got undeprecated)

Metadata Management
P0 Reducing the size of the metastore ‚Äì whatever it takes: some ideas were to not store COLUMNS etc.

One idea here is to introduce something like a schema object that contains the column objects. Partitions would inherit the schema
object, which would only change when the table schema changes. Also work would be involved to migrate the existing setup. This would
greatly reduce the number of rows in columns (current in the billions).

P1 View improvements

Test, Error Messages and Debugging
P0 Heavy-duty test infrastructure
Automated code coverage reports
Hive CLI improvement/Error messages
HiveServer robustness
Debuggability / Resumability:

Show users the last portion of the data that caused the task to fail
Restart a job with a particular mapper (that failed earlier, for debugging purposes)
Resume at map-reduce job level.

#
#
#

	Roadmap

