Testing Pages

Here's a bit of what I've found out while writing tests for Wicket. The code is using Wicket 1.2 beta 3, but most of it should apply to 1.1.1 as well.

® To avoid code duplication, you can extend WicketTester to start in the application path you want through the WicketTester(String path)
constructor. It might also be useful to add common initialization for all tests (like basic services and such) and provide an accessible method to
add your standard authorization strategy for tests that need it (not all my tests do, in fact most don't). For instance:

public class AppTester extends W cket Tester {

public AppTester() {
super ("/adm n");

}

public void initialize() { // not always called
get SecuritySettings().setAuthorizationStrategy(new Adm nAut hStrategy());
Servicelnitializer.initializeDevel opnent Services();

}

protected | SessionFactory get Sessi onFactory() {
return new Adm nSessi onFactory(this);

}

® Similarly, you may extend JUnit's testcase (when it makes sense) to instantiate your tester.

® There are 2 things | usually test on a page: proper navigation and proper data binding. Data binding also includes correct data validation and er
ror messaging. The following is an easy way to test the result of attribute modifiers (see also the mailing for few pointers to the source code of
AjaxResponseTarget.respondComponent() as an example):

/1 e.g., Your TestCase -class
private final static Method get Repl aceModel Met hod;

static {
try {
get Repl aceMbdel Met hod = Attri buteMdifier.class. get Decl aredMet hod(" get Repl aceMbdel ") ;
get Repl aceMbdel Met hod. set Accessi bl e(true);
} catch (Exception e) {
e.printStackTrace();
throw new Runti meException(e);
}
}

public void assertAttribute(String message, String expected, Conponent conponent, String attribute) {
AttributehMdifier behavior = getAttributeMdifier(conponent, attribute);
if (behavior !'= null) {
try {
| Model <?> nodel = (| Mbdel <?>) get Repl aceModel Met hod. i nvoke(behavi or);
assert Equal s(message, expected, npdel.getObject().toString());
return;
} catch (Exception e) {
t hrow new Runti neException(e);
}
}

fail ("Attribute not found.");
}

® For data binding tests, | usually separate them in 2 parts:
© Data->HTML (rendering): for this test, set your data on the database (through your services if you can) or pass it in the constructor of
your class, then check if the correct components were generated and the data was correctly bound to the models of those components
(when applicable. For instance:

public void testRender() {
/] add sone values directly to the database, to check the rendering (services are not
flexi bl e enough for ne)
/1 template here is a Spring JDBCTenpl ate, which is quite useful for running direct SQL
queries w thout nuch red-tape
t enpl at e. execut e(

"update config set val ue='sanpl euser' where nane='userNane';" +

"update config set val ue=' sanpl epass' where nane='password' ;" +

"update config set value='true' where nane='all owO fsiteAccess' ;" +

"update config set val ue='sanpl ei prange, anot heri p' where nane='trustedl PRange' ;" +
"commit;");

/'l start the page - ny page is package protected for better encapsulation, so | need an
| Test PageSour ce

/1 if the page takes paraneters, just pass themto the constructor instead of setting them

/1 through the database (that allows for better reuse)

/'l [tester] here is an instance of ny AppTester described above

tester.start Page(new | Test PageSource() {

publ i c Page get Test Page() { return new ChangeOf fSiteAccessPage(); }

IO

/1 check that the right page was rendered (no unexpected redirect or intercept)

tester. assert Render edPage(ChangeO f Si t eAccessPage. cl ass) ;

/] assert that there's no error nessage

tester.assert NoError Message();

/1 check that the right conmponents are in the page

tester. assert Conponent (" feedback", FeedbackPanel . cl ass);

tester.assert Conponent ("fornf, Form class);

/1 ok, now check not only that the conponent is present, but also that the nodel object

/1 contains the correct value (was correctly bound)

tester.assert Conponent ("form usernane", TextField.class);

final TextField usernaneField = (TextField) tester.getConponentFronlLast Render edPage("form
user nane");

assert Equal s("sanpl euser”, usernaneFi el d. get Model Qoj ect ());

ot her conponents

© HTML->Data (form submitting): this test verifies that the data you set on the form components gets sent to the correct data objects, and
that the correct data validation and type conversion gets done. The code for those tests is typically centered around the FormTester.
Below is an example of it:

public void testlnvalidLogin() {
/] create the formtester object, mapping to its wicket:id
FornTester form = tester.newForniester("“fornt);
/] set the paraneters for each conponent in the form
/1 notice that the nane is relative to the form- so it's 'usernane', not 'formusernane'
as in assert Conponent

form set Val ue("usernanme", "test");

/'l unset value is enpty string (w cket binds this to null, so careful if your setter does
not expect nulls)

form set Val ue("password", "");

/'l slight pain in the butt, for Radi oG oups the value string is a bit conplicated

/1 1 believe it's the pageversion followed by the conpl ete conponent name (not the
relative, now) then the id for the choice itself

/Il the easiest way is to render the page once and then copy & paste

/| pageversion didn't seemto have an effect, so | always replace it by 0

form set Val ue("of f Si t eAccessEnabl ed", "O0:form of f Si t eAccessEnabl ed: Yes");

/1 another one to pay attention: |istviews

/1 here | have a 3 columm iteration through a listvieww th 10 rows iterating through
anot her |istview

/]l soit's the listview followed by the rowid followed by the inner conponent in the
I'istview

form set Val ue("addr essRow. 0: addr essCol um: 0: mask", "");

/1l all set, submt

formsubmt();

Il check if the page is correct: in this case, |'mexpecting an error to take ne back to
the same page

tester. assert Render edPage(ChangeO f Si t eAccessPage. cl ass) ;

/'l check if the error message is the one expected (you shoul d use wi cket's
internationalization for this)

/1 if you're not expecting an error (testing for submt successful) use
assert NoError Message() instead

tester.assert Error Messages(new String[] { "A Login and Password are required to enabl e
of fsite access." });

}

® For navigation tests, in most cases you can use the assertRenderedPage(Class) method. You can follow links by submitting the forms or
clicking the link. Below are a couple of examples:

public void testCancel Li nk() {
tester.clickLink("formcancel Button");
tester. assert Render edPage(ChangeSyst enPar anet er sPage. cl ass) ;
clicked on cancel, verify that the data was not changed in any way
}
public void testGenerateQueryReport() throws UnsupportedEncodi ngException {
/1 this one is a bit nore interesting, as this page does a downl oad-on-subnit
prepare the data for the test
/] prepare the form fill the data, and submt
final FornTester form = prepareForniTester();
form set Val ue("dat aType", "O0:form dataType: query");
formsubmt();
/'l check that the submt created a downl oad Iink
final MockHttpServl et Response servl et Response = tester. get Servl et Response();
/1 in this case it's a CSV report, so just convert the whole thing to a string
final String report = new String(servletResponse. getBi naryContent(), servletResponse.
get Char act er Encodi ng());
/] compare it
assert Equal s(" QUERY COUNT\ n\n", report);

® A few random testing tips:
O Code reuse is important, but test code clarity is essential. No one tests for tests, so if tests are too complex due to heavy inheritance or
intricate execution paths, they will contain bugs themselves, defeating the purpose of testing in the first place.
O Test execution time is important too, if tests take 20 minutes to run you won't run them often (if ever). Try to avoid tests that rely heavily
on the database, or create mock objects for the services those rely on.

© In my code, most pages have package (default) scope. This decreases the apparent complexity of the system (you only need to know a
few pages at a time), decreases coupling and makes the packages more cohesive. However, Wicket's relatively heavy use of reflection
will cause runtime exceptions sometimes. Just be sure to touch all pages/panels during tests (unit tests AND manual tests).

	Testing Pages

