
1

Scalable CXF applications using 
JMS transport

Java Message Service (JMS) is wide spread and popular messaging API. As JMS is standardized, the same 
application code can successfully work with different JMS implementations: WS MQ, Active MQ, Tibco, 
Joram, BEA WebLogic, OpenJMS.
CXF provides a transport that enables endpoints to use JMS queues and topics.

DEFAULT CXF CONSUMER AND PRODUCER USING JMS

Implementing CXF client and service using JMS transport is trivial.
Basically, it is enough to configure two things in WSDL: 
a) specify jms transport URI in binding element;
b) define jms address in port element.

WSDL binding and port should look like:

<wsdl:definitions
    xmlns:jms="http://cxf.apache.org/transports/jms" 
...
  <wsdl:binding name="Greeter_SOAPBinding" type="tns:Greeter">
        <soap:binding style="document" transport="http://cxf.apache.org
/transports/jms"/>
...
 </wsdl:binding>

  <wsdl:service name="JMSGreeterService">
        <wsdl:port binding="tns:JMSGreeterPortBinding" name="GreeterPort">
            <jms:address
                destinationStyle="queue"
                jndiConnectionFactoryName="ConnectionFactory" 
jndiDestinationName="dynamicQueues/test.cxf.jmstransport.queue">
               <jms:JMSNamingProperty name="java.naming.factory.initial" 
value="org.apache.activemq.jndi.ActiveMQInitialContextFactory"/>
                  <jms:JMSNamingProperty name="java.naming.provider.url" 
value="tcp://localhost:61616"/>
           </jms:address>
        </wsdl:port>
   </wsdl:service>



2

1.  
2.  

CXF clients and servers implemented in java or using Spring configuration magically work for this WSDL 
(under the hood CXF selects correct JMS Conduit and Destination based on address URL). 
Details are described in .http://cxf.apache.org/docs/jms-transport.html
CXF also delivers jms_queue and jms_pubsub examples illustrating using JMS transport with default settings 
for ActiveMQ.

SCALABILITY PROBLEMS

Unfortunately there are two main scalability drawbacks when using default JMS configuration:

It doesn't provide sessions pooling and consumers/producers cache .
Default JMS message consumer is single threaded. It means that only one thread will get messages 
from the queue or topic and pass them to further processing.

Both aspects are critical for enterprise applications and their implementation is not an easy task. Is there any 
solution? Yes: Spring JMS functionality and CXF Features. Let discuss them in detail.

 - Some JMS vendors provide integrated session pooling and consumers/producers cache in 
ConnectionFactory. In this case using Spring CachingConnectionFactory is not necessary. Please refer 
vendor documentation to clear it.

SPRING JMS FUNCTIONALITY

Spring provides a number of useful classes that helps to implement scalable JMS application. Important for 
us are: org.springframework.jms.connection.CachingConnectionFactory
org.springframework.jms.listener.DefaultMessageListenerContainer

CachingConnectionFactory

CachingConnectionFactory provides session pooling, consumers and producers cache. Bellow is a sample 
configuration of CachingConnectionFactory:

<bean id="cachingConnectionFactory" class="org.springframework.jms.connection.
CachingConnectionFactory">
        <property name="targetConnectionFactory">
                <bean class="org.apache.activemq.ActiveMQConnectionFactory">
                        <property name="brokerURL" value="tcp://localhost:
61616" />
                </bean>
        </property>
        <property name="sessionCacheSize" value="20"/>
        <property name="cacheProducers" value="true"/>
        <property name="cacheConsumers" value="true"/>
</bean>

As you can see it is possible to set the size of the session pool and switch on producers and consumers 
caching.

http://cxf.apache.org/docs/jms-transport.html


3

1.  

2.  

3.  

DefaultMessageListenerContainer

DefaultMessageListenerContainer enables getting messages from the destination in parallel, using multiple 
threads.
Configuration of DefaultMessageListenerContainer looks like:

<bean id="queueContainerListener"
        class="org.springframework.jms.listener.
DefaultMessageListenerContainer">
                <property name="connectionFactory" ref="connectionFactory" />
                <property name="destinationName" value="Q_WM_OUT" />
                <property name="messageListener" ref="simpleListener" />
                <property name="cacheLevel" value="3" />
                <property name="concurrentConsumers" value="10" />
                <property name="maxConcurrentConsumers" value="50" />
</bean>        

It is possible to define here:

Initial and maximal number of concurrent consumers. This tells the Spring to always start up a initial 
number of consumers (concurrentConsumers). When a new message has been received, if the 
maxConcurrentConsumers has not been reached, then a new consumer is created to process the 
message.
Cache level (3- cache connections, sessions and consumers; 2 – cache connections and sessions, 
1 – cache connections only)
Specify message listener class (implementing MessageListener interface) and connection factory.

It is important to be aware of following things related to consumers caching:

it doesn't make sense to increase the number of concurrent consumers for a JMS topic. This just 
leads to concurrent consumption of the same message.
the concurrentConsumers property and the maxConcurrentConsumers property can be modified at 
runtime, for example, via JMX.
For the details you can refer following .Bruce Snider's blog

You can see that Spring provides solution for both mentioned scalability aspects. But how we can use it in 
CXF?

CXF FEATURES

As the CXF JMS implementation is based the Spring JMS classes the user can benefit from described Spring 
JMS functionality.
CXF allows to configure details of the JMS transport using the JmsConfigFeature. A Feature is something 
that is able to customize a Server, Client, or Bus, typically adding capabilities. In our case we will add a 
feature in jaxws:endpoint and jaxws:client to tune the JMS transport.

http://bsnyderblog.blogspot.com/2010/05/tuning-jms-message-consumption-in.html


4

Server configuration

<bean id="cachingConnectionFactory" class="org.springframework.jms.connection.
CachingConnectionFactory">
        <property name="targetConnectionFactory">
                <bean class="org.apache.activemq.ActiveMQConnectionFactory">
                        <property name="brokerURL" value="tcp://localhost:
61616" />
                </bean>
        </property>
        <property name="sessionCacheSize" value="20"/>
        <property name="cacheConsumers" value="true"/>
</bean>

<bean id="jmsConfig" class="org.apache.cxf.transport.jms.JMSConfiguration"
                p:connectionFactory-ref="cachingConnectionFactory"
                p:cacheLevel="3" 
                p:concurrentConsumers="16"
                p:maxConcurrentConsumers="16"
                p:targetDestination="Q_HSC"
                p:wrapInSingleConnectionFactory="false"
        />

<jaxws:endpoint id=" JMSGreeterService" address="jms://"
                implementor="#JMSGreeterServiceImpl">
                <jaxws:features>
                        <bean class="org.apache.cxf.transport.jms.
JMSConfigFeature">
                                <p:jmsConfig-ref="jmsConfig">
                        </bean>
                </jaxws:features>
</jaxws:endpoint>

You can see that the endpoint configuration contains the JMSConfigFeature that has a JMSConfiguration 
property.
JMSConfiguration supports all settings that we have seen in Spring DefaultMessageListenerContainer: 
cached connection factory with session pool size, number of concurrent consumers, cache level. All settings 
of JMSConfiguration are described in details in .http://cxf.apache.org/docs/using-the-jmsconfigfeature.html
Using this configuration the server application can be tuned to achieve optimal performance in our target 
environment.

http://cxf.apache.org/docs/using-the-jmsconfigfeature.html


5

1.  
2.  

1.  
2.  

Client configuration

<bean id="cachingConnectionFactory" class="org.springframework.jms.connection.
CachingConnectionFactory">
        <property name="targetConnectionFactory">
                <bean class="org.apache.activemq.ActiveMQConnectionFactory">
                        <property name="brokerURL" value="tcp://localhost:
61616" />
                </bean>
        </property>
        <property name="sessionCacheSize" value="20"/>
        <property name="cacheProducers" value="true"/>
</bean>

<bean id="jmsConfig" class="org.apache.cxf.transport.jms.JMSConfiguration"
p:connectionFactory-ref="connectionFactory" p:targetDestination="Q_HSC"
                p:wrapInSingleConnectionFactory="false" /> 

<jaxws:client id="JMSGreeterService" address="jms://"
        serviceClass="com.sopera.services.tpoc.eventgenerator.EventGenerator”>
                <jaxws:features>
                        <bean class="org.apache.cxf.transport.jms.
JMSConfigFeature">
                                <property name="jmsConfig" ref="jmsConfig"/>
                        </bean>
                </jaxws:features>
        </jaxws:client>

Client configuration looks very similar to the server one except two things:

CachingConnectionFactory activates producers caching instead consumers caching;
JMSConfiguration hasn’t concurrent consumers settings: client concurrency is under application 
control and can be implemented using standard Java concurrency API.

CONCLUSION

It is possible to achieve scalability of a CXF client and service using Spring JMS functionality and the CXF 
JMS Configuration Feature. 
It is not necessary to write any line of code, just configure and leverage already existing stuff.
Using this feature can have essential invluence on the performance for some environments: in one Prove Of 
Concept I have improved CXF service throughput on 360% (from 500 to 1800 msg/sec) just using session 
pool and multithread JMS consumer!
Reference performance numbers for SOAP over JMS are represented in , so you Christian Schneider's article
can easily compare it with own results and make appropriate tunning if necessary.

REFERENCES

CXF JMS Transport: http://cxf.apache.org/docs/jms-transport.html
CXF Features: http://cxf.apache.org/docs/features.html

http://www.liquid-reality.de/pages/viewpage.action?pageId=5865562
http://cxf.apache.org/docs/jms-transport.html
http://cxf.apache.org/docs/features.html


6

3.  

4.  

5.  

Spring JMS functionality: http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference
/html/jms.html
Spring JMS performance tunning: http://bsnyderblog.blogspot.com/2010/05/tuning-jms-message-
consumption-in.html
CXF performance: http://www.liquid-reality.de/pages/viewpage.action?pageId=5865562

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jms.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jms.html
http://bsnyderblog.blogspot.com/2010/05/tuning-jms-message-consumption-in.html
http://bsnyderblog.blogspot.com/2010/05/tuning-jms-message-consumption-in.html
http://www.liquid-reality.de/pages/viewpage.action?pageId=5865562

	Scalable CXF applications using JMS transport

