
Fsck and autorecovery

BookKeeper auto recovery discussed in JIRA and already implemented many sub-tasks in it.BOOKKEEPER-237
We have to discuss about Fsck feature. Edit this page

State of the plan (as of 31 Aug 2012)

BookKeeper Auto-Recovery

When any Bookie goes down in the BookKeeper cluster, there is no way to recover the lost data from that Bookie server. For example, if we have 2
replicas for a ledger in BK cluster, and a node goes down from it, we will be running the cluster with single replica. Running clusters with single or no
replicas will be a risk, as nodes may fail in general. To avoid such situations, we need a mechanism for recovering the data to new bookies for meeting the
enough replica criteria (quorum size) and it is called Auto-Recovery in BookKeeper.

Working

Auto-Recovery has two main modules:

 Auditor
 ReplicationWorker

AutoRecoveryMain is an Auto-recovery node, which internally initializes and starts Auditor and ReplicationWorker threads. So, each Auto-recovery node
will have two threads running.

This Auto-recovery node has to be started in each Bookie machine. All recovery nodes will participate in leader election and one Auditor may become the
leader and others will just watch the elected auditor failure to participate again in next election.

Auditor:

Once the Auditor thread is started, the auditor elector will go for the election to win the auditing job for Bookie cluster. Here, auditing job would be that, it
has to detect the under-replicated ledgers in the cluster due to Bookie failures.

Auditor will keep watch on the available Bookies in the cluster. Bookie will add its entry in the available bookie during Bookie server startup. So, when the
Bookie is crashed or killed, Auditor will get a notification about the children change in available Bookie list. Auditor will immediately scan the complete
ledger list related to that failed Bookie. On getting the details of ledgers, Auditor node publishes the under-replicated
ledgers in under-replication znode path in Zookeeper. After this, again it will be watching Bookie failures (by resetting Zookeeper watcher) on available
Bookie list.

ReplicationWorker:

ReplicationWorker will get the under replicated ledgers one after the other for rereplication. If there are no ledgers in under-replicated state, worker will wait
for the ledgers to be added into under-replicated list in ZK by Auditor.

The wiki pages are not used for documentation any more. Please visit http://bookkeeper.apache.org for latest documentation.

https://issues.apache.org/jira/browse/BOOKKEEPER-237
https://cwiki.apache.org/confluence/pages/editpage.action?pageId=27844384
http://bookkeeper.apache.org/

Once the auditor publishes about the under replicated ledgers in ZK, ReplicationWorker picks one ledger and get a lock on it. Here it will get the lock by
just adding an ephemeral znode with ledger name in underreplication/locks folder. Then replication worker scans the ledger and gets the under replicated
fragments. If the ledger fragment already contains the local Bookie address in its ensemble, it will skip the replication for that ledger as ReplicationWorker
will treat local Bookies as a target bookie to copy or replicate ledger fragment to it. If replication is not completed for all the under-replicated fragments in
the ledger, ReplicationWorker will just release the lock for the ledger. Technically, releasing lock will be deleting the held lock in /underreplication/locks
folder. So, that other replication worker can immediately get notified about the lock deletion and may pick this ledger for replicating the pending fragments
from the ledger. This process works well for the closed ledgers. If the ledger is in the open state and if the last fragment of the ledger in under replication
state, there will be a risk of data loss if we replicate the last fragment
straight away like above process.

How ReplicationWorker handled this data loss scenario?
 The last fragment of the ledger is in under replicated state; replication worker replicates it and updates the ledger metadata with local Bookies Scenario:

address. Immediately, the failed Bookie started and running. Now the client resumed for adding some more entries, and it can continue with adding entries
with the old Bookie. But ReplicationWorker already change the metadata for that fragment with local Bookie. That means, that client unnecessarily adding
the entries to the old bookie whose address is already removed from fragment ensemble. So, this can create data loss if other bookie goes down and even
though old Bookie is running fine.
To prevent this situation, ReplicationWorker will postpone the replications if the last fragment of the ledger is in open state. In such case it will just schedule
a timer task for that ledger for delaying replication for such ledgers. That timer task scheduling period is configurable and default value is 30000ms. Once
the timer fired, it will force fence the ledger if it is still in open state and will release the ledger lock.So, that will trigger rereplication automatically as RW will
loop to get the under replicated ledgers. So, any under-replicated last fragment ledger will not be kept open for long time if the client is idle and not
reforming ensemble for long (more than pending replication timeout.)

Open Questions

We should also periodically check ledgers are available. Where should this run from?

	Fsck and autorecovery

