
Guava EventBus

Guava EventBus Component

The allows publish-subscribe-style communication between components without requiring the components to explicitly register Google Guava EventBus
with one another (and thus be aware of each other). The component provides integration bridge between Camel and guava-eventbus: Google Guava

 infrastructure. With the latter component, messages exchanged with the Guava can be transparently forwarded to the Camel routes. EventBus EventBus
EventBus component allows also to route body of Camel exchanges to the Guava .EventBus

Maven users will need to add the following dependency to their for this component:pom.xml

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-guava-eventbus</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

URI format

guava-eventbus:busName[?options]

Where represents the name of the instance located in the Camel registry.busName com.google.common.eventbus.EventBus

Options

Name Default
Value

Description

eventCl
ass

null If used on the consumer side of the route, will filter events received from the to the instances of the class and Camel 2.10: EventBus
superclasses of . Null value of this option is equal to setting it to the i.e. the consumer will capture all eventClass java.lang.Object
messages incoming to the event bus. This option cannot be used together with option.listenerInterface

listene
rInterf
ace

null The interface with method(s) marked with the annotation. Dynamic proxy will be created over the interface so it could Camel 2.11: @Subscribe
be registered as the listener. Particularly useful when creating multi-event listeners and for handling properly. This EventBus DeadEvent
option cannot be used together with option.eventClass

Usage

Using component on the consumer side of the route will capture messages sent to the Guava and forward them to the guava-eventbus EventBus
Camel route. Guava EventBus consumer processes incoming messages .asynchronously

SimpleRegistry registry = new SimpleRegistry();
EventBus eventBus = new EventBus();
registry.put("busName", eventBus);
CamelContext camel = new DefaultCamelContext(registry);

from("guava-eventbus:busName").to("seda:queue");

eventBus.post("Send me to the SEDA queue.");

Using component on the producer side of the route will forward body of the Camel exchanges to the Guava instance.guava-eventbus EventBus

Available since Camel 2.10.0

http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/eventbus/package-summary.html
http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/eventbus/package-summary.html
http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/eventbus/package-summary.html
http://camel.apache.org/asynchronous-routing-engine.html

SimpleRegistry registry = new SimpleRegistry();
EventBus eventBus = new EventBus();
registry.put("busName", eventBus);
CamelContext camel = new DefaultCamelContext(registry);

from("direct:start").to("guava-eventbus:busName");

ProducerTemplate producerTemplate = camel.createProducerTemplate();
producer.sendBody("direct:start", "Send me to the Guava EventBus.");

eventBus.register(new Object(){
 @Subscribe
 public void messageHander(String message) {
 System.out.println("Message received from the Camel: " + message);
 }
});

DeadEvent considerations

Keep in mind that due to the limitations caused by the design of the Guava EventBus, you cannot specify event class to be received by the listener without
creating class annotated with method. This limitation implies that endpoint with option specified actually listens to all possible @Subscribe eventClass
events () and filter appropriate messages programmatically at runtime. The snipped below demonstrates an appropriate excerpt from java.lang.Object
the Camel code base.

@Subscribe
public void eventReceived(Object event) {
 if (eventClass == null || eventClass.isAssignableFrom(event.getClass())) {
 doEventReceived(event);
...

This drawback of this approach is that instance used by Camel will never generate EventBus com.google.common.eventbus.DeadEvent
notifications. If you want Camel to listen only to the precisely specified event (and therefore enable support), use DeadEvent listenerInterface
endpoint option. Camel will create dynamic proxy over the interface you specify with the latter option and listen only to messages specified by the interface
handler methods. The example of the listener interface with single method handling only instances is demonstrated below.SpecificEvent

package com.example;

public interface CustomListener {

 @Subscribe
 void eventReceived(SpecificEvent event);

}

The listener presented above could be used in the endpoint definition as follows.

from("guava-eventbus:busName?listenerInterface=com.example.CustomListener").to("seda:queue");

Consuming multiple type of events

In order to define multiple type of events to be consumed by Guava EventBus consumer use endpoint option, as listener interface listenerInterface
could provide multiple methods marked with the annotation.@Subscribe

package com.example;

public interface MultipleEventsListener {

 @Subscribe
 void someEventReceived(SomeEvent event);

 @Subscribe
 void anotherEventReceived(AnotherEvent event);

}

The listener presented above could be used in the endpoint definition as follows.

from("guava-eventbus:busName?listenerInterface=com.example.MultipleEventsListener").to("seda:queue");

	Guava EventBus

