
WS-SecurityPolicy
WS-SecurityPolicy
CXF 2.2 introduced support for using to configure WSS4J instead of the custom configuration documented on the page. WS-SecurityPolicy WS-Security
However, all of the "background" material on the page still applies and is important to know. WS-SecurityPolicy just provides an easier and WS-Security
more standards based way to configure and control the security requirements. With the security requirements documented in the WSDL as WS-Policy
fragments, other tools such as .NET can easily know how to configure themselves to inter-operate with CXF services.

CXF supports WS-SecurityPolicy versions 1.1 and later. It does not support WS-SecurityPolicy 1.0.

Backwards compatibility configuration note

From Apache CXF 3.1.0, some of the WS-Security based configuration tags have been changed to just start with "security-". This is so that they can be
shared with the component. Apart from the prefix change, the tags are exactly the same. Older "ws-security-" values continue to be JAX-RS XML Security
accepted in CXF 3.1.0. See the page for information on the new shared configuration tags.Security Configuration

Enabling WS-SecurityPolicy

In CXF 2.2, if the cxf-rt-ws-policy and cxf-rt-ws-security modules are available on the classpath, the WS-SecurityPolicy stuff is automatically enabled. Since
the entire security runtime is policy driven, the only requirement is that the policy engine and security policies be available.

If you are using the full "bundle" jar, all the security and policy stuff is already included.

Policy description

With WS-SecurityPolicy, the binding and/or operation in the wsdl references a fragment that describes the basic security requirements for WS-Policy
interacting with that service. The allows for specifying things like asymmetric/symmetric keys, using transports (https) for WS-SecurityPolicy specification
encryption, which parts/headers to encrypt or sign, whether to sign then encrypt or encrypt then sign, whether to include timestamps, whether to use
derived keys, etc... Basically, it describes what actions are necessary to securely interact with the service described in the WSDL.

However, the WS-SecurityPolicy fragment does not include "everything" that is required for a runtime to be able to able to create the messages. It does not
describe things such as locations of key stores, user names and passwords, etc... Those need to be configured in at runtime to augment the WS-
SecurityPolicy fragment.

Configuring the extra properties

There are several extra properties that may need to be set to provide the additional bits of information to the runtime. Note that you should check that a
particular property is supported in the version of CXF you are using. First, see the page for information on the configuration tags that Security Configuration
are shared with the JAX-RS XML Security component. Here are configuration tags that only apply to the WS-SecurityPolicy layer, and hence all start with
"ws-security" (as opposed to the common tags which now start with "security-").

Boolean WS-Security configuration tags, e.g. the value should be "true" or "false".

constant d
e
f
a
ult

definition

ws-security.
validate.token

tr
ue

Whether to validate the password of a received UsernameToken or not.

ws-security.
username-token.
always.encrypted

tr
ue

Whether to always encrypt UsernameTokens that are defined as a SupportingToken. This should not be set to false in a
production environment, as it exposes the password (or the digest of the password) on the wire.

ws-security.is-
bsp-compliant

tr
ue

Whether to ensure compliance with the Basic Security Profile (BSP) 1.1 or not.

ws-security.self-
sign-saml-
assertion

f
al
se

Whether to self-sign a SAML Assertion or not. If this is set to true, then an enveloped signature will be generated when the
SAML Assertion is constructed. Only applies up to CXF 2.7.x.

ws-security.
enable.nonce.
cache

(
v
a
ri
e
s)

Whether to cache UsernameToken nonces. See for more information.here

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/ws-securitypolicy.html
https://cwiki.apache.org/confluence/display/CXF20DOC/WS-Security
https://cwiki.apache.org/confluence/display/CXF20DOC/WS-Security
https://cwiki.apache.org/confluence/display/CXF20DOC/WS-Policy
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+XML+Security
https://cwiki.apache.org/confluence/display/CXF20DOC/Security+Configuration
https://cwiki.apache.org/confluence/display/CXF20DOC/WS-Policy
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/ws-securitypolicy.html
https://cwiki.apache.org/confluence/display/CXF20DOC/Security+Configuration
http://cxf.apache.org/javadoc/latest/org/apache/cxf/ws/security/SecurityConstants.html#ENABLE_NONCE_CACHE

ws-security.
enable.
timestamp.cache

(
v
a
ri
e
s)

Whether to cache Timestamp Created Strings. See for more information.here

ws-security.
enable.saml.
cache

(
v
a
ri
e
s)

Whether to cache SAML2 Token Identifiers, if the token contains a "OneTimeUse" Condition.

ws-security.
enable.streaming

f
al
se

Whether to enable streaming WS-Security.

ws-security.
return.security.
error

f
al
se

Whether to return the security error message to the client, and not one of the default error QNames.

ws-security.must-
understand

tr
ue

Set this to "false" in order to remove the SOAP mustUnderstand header from security headers generated based on a WS-
SecurityPolicy.

ws-security.store.
bytes.in.
attachment

(
v
a
ri
e
s)

CXF 3.1.3/3.0.6 Whether to store bytes (CipherData or BinarySecurityToken) in an attachment if MTOM is enabled. True by
default in CXF 3.1.x, false for CXF 3.0.x.

ws-security.use.
str.transform

tr
ue

CXF 3.1.5/3.0.8 Whether to use the STR (Security Token Reference) Transform when (externally) signing a SAML Token. The
default is true.

ws-security.add.
inclusive.prefixes

tr
ue

CXF 3.1.7 Whether to add an InclusiveNamespaces PrefixList as a CanonicalizationMethod child when generating Signatures
using WSConstants.C14N_EXCL_OMIT_COMMENTS.

ws-security.
expand.xop.
include

(
v
a
ri
e
s)

CXF 3.3.3/3.2.10 Whether to search for and expand xop:Include Elements for encryption and signature (on the outbound side)
or for signature verification (on the inbound side). This ensures that the actual bytes are signed, and not just the reference. The
default is "true" if MTOM is enabled, false otherwise.

Non-boolean WS-Security Configuration parameters

ws-security.
timestamp.
timeToLive

The time in seconds to append to the Creation value of an incoming Timestamp to determine whether to accept the Timestamp as valid
or not. The default value is 300 seconds (5 minutes).

ws-security.
timestamp.
futureTimeTo
Live

The time in seconds in the future within which the Created time of an incoming Timestamp is valid. The default value is "60". See here
for more information.

ws-security.
spnego.client.
action

The implementation to use for SPNEGO. This allows the user to plug in a different implementation to obtain a SpnegoClientAction
service ticket.

ws-security.
nonce.cache.
instance

This holds a reference to a instance used to cache UsernameToken nonces. The default instance that is used is the ReplayCache EHC
.acheReplayCache

ws-security.
timestamp.
cache.
instance

This holds a reference to a instance used to cache Timestamp Created Strings. The default instance that is used is the ReplayCache E
.HCacheReplayCache

ws-security.
saml.cache.
instance

This holds a reference to a instance used to cache SAML2 Token Identifiers, when the token has a "OneTimeUse" ReplayCache
Condition. The default instance that is used is the .EHCacheReplayCache

ws-security.
cache.config.
file

Set this property to point to a configuration file for the underlying caching implementation. The default configuration file that is used is cxf
 in the cxf-rt-ws-security module. From CXF 3.4.0, this cache file only applies to the TokenStore caching implementation, -ehcache.xml

not for the WSS4J ReplayCache.

http://cxf.apache.org/javadoc/latest/org/apache/cxf/ws/security/SecurityConstants.html#ENABLE_TIMESTAMP_CACHE
http://cxf.apache.org/javadoc/latest/org/apache/cxf/ws/security/SecurityConstants.html#TIMESTAMP_FUTURE_TTL
http://ws.apache.org/wss4j/apidocs/org/apache/wss4j/common/spnego/SpnegoClientAction.html
http://ws.apache.org/wss4j/apidocs/org/apache/wss4j/common/cache/ReplayCache.html
http://ws.apache.org/wss4j/apidocs/org/apache/wss4j/common/cache/EHCacheReplayCache.html
http://ws.apache.org/wss4j/apidocs/org/apache/wss4j/common/cache/EHCacheReplayCache.html
http://ws.apache.org/wss4j/apidocs/org/apache/wss4j/common/cache/ReplayCache.html
http://ws.apache.org/wss4j/apidocs/org/apache/wss4j/common/cache/EHCacheReplayCache.html
http://ws.apache.org/wss4j/apidocs/org/apache/wss4j/common/cache/EHCacheReplayCache.html
http://ws.apache.org/wss4j/apidocs/org/apache/wss4j/common/cache/ReplayCache.html
http://ws.apache.org/wss4j/apidocs/org/apache/wss4j/common/cache/EHCacheReplayCache.html
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/resources/cxf-ehcache.xml?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/resources/cxf-ehcache.xml?view=markup

org.apache.
cxf.ws.
security.
tokenstore.
TokenStore

The instance to use to cache security tokens. By default this uses the if EhCache is available. TokenStore EHCacheTokenStore
Otherwise it uses the .MemoryTokenStore

ws-security.
cache.
identifier

The Cache Identifier to use with the TokenStore. CXF uses the following key to retrieve a token store: "org.apache.cxf.ws.security.
tokenstore.TokenStore-<identifier>". This key can be used to configure service-specific cache configuration. If the identifier does not
match, then it falls back to a cache configuration with key "org.apache.cxf.ws.security.tokenstore.TokenStore". The default "<identifier>"
is the QName of the service in question.

ws-security.
role.classifier

If one of the WSS4J Validators returns a JAAS Subject from Validation, then the WSS4JInInterceptor will attempt to create a
SecurityContext based on this Subject. If this value is not specified, then it tries to get roles using the DefaultSecurityContext in cxf-rt-
core. Otherwise it uses this value in combination with the SUBJECT_ROLE_CLASSIFIER_TYPE to get the roles from the Subject.

ws-security.
role.classifier.
type

If one of the WSS4J Validators returns a JAAS Subject from Validation, then the WSS4JInInterceptor will attempt to create a
SecurityContext based on this Subject. Currently accepted values are "prefix" or "classname". Must be used in conjunction with the
SUBJECT_ROLE_CLASSIFIER. The default value is "prefix".

ws-security.
asymmetric.
signature.
algorithm

This configuration tag overrides the default Asymmetric Signature algorithm (RSA-SHA1) for use in WS-SecurityPolicy, as the WS-
SecurityPolicy specification does not allow the use of other algorithms at present.

ws-security.
symmetric.
signature.
algorithm

This configuration tag overrides the default Symmetric Signature algorithm (HMAC-SHA1) for use in WS-SecurityPolicy, as the WS-
SecurityPolicy specification does not allow the use of other algorithms at present.

ws-security.
password.
encryptor.
instance

A PasswordEncryptor instance, which is used to encrypt or decrypt passwords in the Merlin Crypto implementation

ws-security.
delegated.
credential

A delegated credential to use for WS-Security. Currently only a Kerberos GSSCredential Object is supported. This is used to retrieve a
service ticket instead of using the client credentials.

ws-security.
security.
token.lifetime

CXF 3.1.9 The security token lifetime value (in milliseconds). The default is "300000" (5 minutes).

Validator implementations for validating received security tokens

ws-security.ut.validator The WSS4J Validator instance to use to validate UsernameTokens. The default value is the .UsernameTokenValidator

ws-security.saml1.
validator

The WSS4J Validator instance to use to validate SAML 1.1 Tokens. The default value is the .SamlAssertionValidator

ws-security.saml2.
validator

The WSS4J Validator instance to use to validate SAML 2.0 Tokens. The default value is the .SamlAssertionValidator

ws-security.timestamp.
validator

The WSS4J Validator instance to use to validate Timestamps. The default value is the .TimestampValidator

ws-security.signature.
validator

The WSS4J Validator instance to use to validate trust in credentials used in Signature verification. The default value is the S
.ignatureTrustValidator

ws-security.bst.validator The WSS4J Validator instance to use to validate BinarySecurityTokens. The default value is the .NoOpValidator

ws-security.sct.validator The WSS4J Validator instance to use to validate SecurityContextTokens. The default value is the .NoOpValidator

Kerberos Configuration tags

constant default definition

ws-security.kerberos.request.credential.delegation false Whether to request credential delegation or not in the KerberosClient.

ws-security.kerberos.use.credential.delegation false Whether to use credential delegation or not in the KerberosClient.

ws-security.kerberos.is.username.in.servicename.form false Whether the Kerberos username is in servicename form or not.

ws-security.kerberos.client n/a A reference to the class used to obtain a service ticket.KerberosClient

ws-security.kerberos.jaas.context n/a The JAAS Context name to use for Kerberos.

ws-security.kerberos.spn n/a The Kerberos Service Provider Name (spn) to use.

https://github.com/apache/cxf/blob/master/rt/ws/security/src/main/java/org/apache/cxf/ws/security/tokenstore/TokenStore.java
https://github.com/apache/cxf/blob/master/rt/ws/security/src/main/java/org/apache/cxf/ws/security/tokenstore/EHCacheTokenStore.java
https://github.com/apache/cxf/blob/master/rt/ws/security/src/main/java/org/apache/cxf/ws/security/tokenstore/MemoryTokenStore.java
http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/validate/UsernameTokenValidator.html
http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/validate/SamlAssertionValidator.html
http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/validate/SamlAssertionValidator.html
http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/validate/TimestampValidator.html
http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/validate/SignatureTrustValidator.html
http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/validate/SignatureTrustValidator.html
http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/validate/NoOpValidator.html
http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/validate/NoOpValidator.html
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/kerberos/KerberosClient.java?view=markup

Configuring via Spring

The properties are easily configured as client or endpoint properties--use the former for the SOAP client, the latter for the web service provider.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://cxf.apache.org/jaxws
 http://cxf.apache.org/schemas/jaxws.xsd">

 <jaxws:client name="{http://cxf.apache.org}MyPortName"
 createdFromAPI="true">
 <jaxws:properties>
 <entry key="security.callback-handler"
 value="interop.client.KeystorePasswordCallback"/>
 <entry key="security.signature.properties"
 value="etc/client.properties"/>
 <entry key="security.encryption.properties"
 value="etc/service.properties"/>
 <entry key="security.encryption.username"
 value="servicekeyalias"/>
 </jaxws:properties>
 </jaxws:client>

</beans>

For the jaxws:client's attribute above, use the namespace of the WSDL along with the attribute of the desired wsdl:port element under the name name
WSDL's service section. (See and for an example.)here here

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://cxf.apache.org/jaxws
 http://cxf.apache.org/schemas/jaxws.xsd">

 <jaxws:endpoint
 id="MyService"
 address="https://localhost:9001/MyService"
 serviceName="interop:MyService"
 endpointName="interop:MyServiceEndpoint"
 implementor="com.foo.MyService">

 <jaxws:properties>
 <entry key="security.callback-handler"
 value="interop.client.UTPasswordCallback"/>
 <entry key="security.signature.properties"
 value="etc/keystore.properties"/>
 <entry key="security.encryption.properties"
 value="etc/truststore.properties"/>
 <entry key="security.encryption.username"
 value="useReqSigCert"/>
 </jaxws:properties>

 </jaxws:endpoint>
</beans>

See this for a more end-to-end example of using WS-SecurityPolicy with X.509 keys.blog entry

Configuring via API's

Configuring the properties for the client just involves setting the properties in the client's RequestContext:

http://tinyurl.com/yatskw4
http://tinyurl.com/y9e7rjf
http://www.jroller.com/gmazza/entry/cxf_x509_profile

Map<String, Object> ctx = ((BindingProvider)port).getRequestContext();
ctx.put("security.encryption.properties", properties);
port.echoString("hello");

	WS-SecurityPolicy

