
Asynchronous Client HTTP Transport

Asynchronous Client HTTP Transport
Apache HttpComponents 4.x
Apache HttpComponents 5.x
Using the HTTP Components 4.x/5.x Transport from Java Code

Setting Credentials
Instrumenting Response Processing

Netty 4.x
Configuration

Asynchronous Client HTTP Transport
By default, CXF uses a transport based on the in-JDK HttpURLConnection object to perform HTTP requests. The HttpURLConnection object uses a
blocking model for all IO operations which requires a per-thread execution model. From a pure performance standpoint, this model generally performs very
well, but it does have problems scaling when many requests need to be executed simultaneously.

Also, the JAX-WS specification allows for generation of asynchronous methods on generated proxies as well as using asynchronous methods on the
Dispatch objects. These methods can take an AsyncHandler object and return a polling Future object so applications do not have to wait for the response.
With the HttpURLConnection based transport, CXF was forced to consume a background thread for each outstanding request.

Apache HttpComponents 4.x

CXF also has an HTTP client transport that is based on the library. Its Maven artifactId is Apache HTTP Components HttpAsyncClient cxf-rt-transports-
.http-hc The HttpAsyncClient library uses a non-blocking IO model. This allows many more requests to be outstanding without consuming extra

background threads. It also allows greater control over things like Keep-Alive handling which is very difficult or impossible with the HttpURLConnection
based transport. However, the non-blocking model does not perform quite as well as the blocking model for pure synchronous request/response
transactions.

By default, if the module is found on the classpath, CXF will use the based implementation for any Async cxf-rt-transports-http-hc HttpAsyncClient
calls, but will continue to use the HttpURLConnection based transport for synchronous calls. This allows a good balance of performance for the common
synchronous cases with scalability for the asynchronous cases. However, using a contextual property of "use.async.http.conduit" and set to true/false, you
can control whether the async or blocking version is used. If "true", the HttpAsyncClient will be used even for synchronous calls, if "false", asynchronous
calls will rely on the traditional method of using HTTPURLConnection along with a work queue to mimic the asynchronicity. And if TLSClientParameters
sets an SSLSocketFactory, as SocketFactory class and SocketFactory#createSocket methods in particular are inherently blocking and sockets
instantiated in such a way cannot be used for asynchronous, so this lead to use the HttpURLConnection based transport.

Another reason to use the asynchronous transport is to use HTTP methods that HttpURLConnection does not support. For example, the github.com REST
API specifies the use of PATCH for some cases, but HttpURLConnection rejects PATCH.

Apache HttpComponents 5.x

Since , CXF offers an HTTP client transport that is based on library, that supports synchronous, asynchronous 3.4.6 Apache HttpComponents HttpClient 5
and reactive programming models. Its Maven artifactId is and it serves as in-place replacement for cxf-rt-transports-http-hc5 cxf-rt-transports-http-hc
(but the usage of those two transports together should be avoided).

This client transport supports HTTP/2 (when enabled using property, see section below).org.apache.cxf.transports.http2.enabled Configuration

Using the HTTP Components 4.x/5.x Transport from Java Code

To force global use of the HTTP Components transport, you can set a bus-level property:

 Bus bus = BusFactory.getDefaultBus();
 // insist on the async connector to use PATCH
 bus.setProperty(AsyncHTTPConduit.USE_ASYNC, Boolean.TRUE);
 // allows the async connector to use HTTP/2 protocol (if supported by the server)
 bus.setProperty(AsyncHTTPConduit.ENABLE_HTTP2, enableHttp2);

Setting Credentials

At the moment, transport does not support OSGi based deploymentscxf-rt-transports-http-hc5

http://hc.apache.org/httpcomponents-asyncclient/index.html
https://hc.apache.org/httpcomponents-client-5.1.x/index.html

The "normal" CXF/JAX-WS method of setting user credentials via the BindingProvider.USERNAME_PROPERTY/PASSWORD_PROPERTY will work with
the Async transport as well. However, the HttpAsyncClient library does have some additional capabilities around NTLM that can be leveraged. In order to
use that, you need to:

Turn on the AutoRedirect and turn off the Chunking for the Conduit. This will allow CXF to cache the response in a manner that will allow the
transport to keep resending the request during the authentication negotiation.
Force the use of the Async transport even for synchronous calls

bp.getRequestContext().put("use.async.http.conduit", Boolean.TRUE);
bp.getRequestContext().put("org.apache.cxf.transports.http2.enabled", Boolean.TRUE); // optionally,
enable HTTP/2

or using constantAsyncHTTPConduit.USE_ASYNC

bp.getRequestContext().put(AsyncHTTPConduit.USE_ASYNC, Boolean.TRUE);
bp.getRequestContext().put(AsyncHTTPConduit.ENABLE_HTTP2, Boolean.TRUE); // optionally, enable HTTP/2

Set the property "org.apache.http.auth.Credentials" to an instance of the Credentials. For example:

Credentials creds = new NTCredentials("username", "pswd", null, "domain");
bp.getRequestContext().put(Credentials.class.getName(), creds);

Instrumenting Response Processing

In certain circumstances, it is beneficial to wrap (or instrument) the async client transport response processing. Starting from Apache CXF 4.0.4 / 3.6.3 /
releases, it is now possible using bus extension, for example:3.5.8 AsyncHttpResponseWrapperFactory

 final AsyncHttpResponseWrapper wrapper = new AsyncHttpResponseWrapper() {
 @Override
 public void responseReceived(HttpResponse response, Consumer<HttpResponse> delegate) {
 delegate.accept(response);
 }
 };

bus.setExtension(() -> wrapper, AsyncHttpResponseWrapperFactory.class);
...

Netty 4.x

Apache CXF also offers an HTTP client transport that is based on Netty 4.x. Its Maven artifactId is .cxf-rt-transports-http-netty-client

This client transport supports HTTP/2 (when enabled using property, see section below).org.apache.cxf.transports.http2.enabled Configuration

Configuration

The Asynchronous HTTP Transport has several options that can set using Bus properties or via the OSGi configuration services to control various aspects
of the underlying Apache HTTP Components HttpAsyncClient objects.

Settings related to the underlying TCP socket (see for a definition of these values):java.net.Socket

org.apache.cxf.transport.http.async.TCP_NODELAY (Default true)

org.apache.cxf.transport.http.async.SO_KEEPALIVE

org.apache.cxf.transport.http.async.SO_LINGER

org.apache.cxf.transport.http.async.SO_TIMEOUT

Settings related to Keep-Alive connection management:

It is very important for the to pass the call to in order to resume the response processing chain, AsyncHttpResponseWrapper delegate
otherwise the response processing may never finish.

http://docs.oracle.com/javase/7/docs/api/java/net/Socket.html

org.apache.cxf.transport.http.async.CONNECTION_TTL Maximum time a connection to live(from creation to expiry) . Default is 60000.

org.apache.cxf.transport.http.async.MAX_CONNECTIONS Maximum number of connections opened in total. Default is 5000.

org.apache.cxf.transport.http.async.MAX_PER_HOST_CONNECTIONS Maximum number of connections opened per host. Default is 1000.

Settings related to support (Apache CXF versions / / +/):HTTP/2 4.0.2+ 3.6.1+ 3.5.7 3.4.11+

org.apache.cxf.transports.http2.enabled true | false Allows HTTP/2 protocol if supported by the server. Default is .false

Settings related to Apache HttpAsyncClient threads and selectors:

org.apache.cxf.transport.http.async.
ioThreadCount

Number of threads HttpAsyncClient uses to process IO events. Default is "-1" which means one thread
per CPU core.

org.apache.cxf.transport.http.async.
interestOpQueued (*)

true/false for whether the interest ops are queues or process directly.

org.apache.cxf.transport.http.async.
selectInterval

Default 1000 ms. How often the selector thread wakes up if there are no events to process additional
things like queue expirations.

* - for Apache HttpComponents 4.x only

Setting to control which conduit is used

org.apache.cxf.
transport.http.
async.usePolicy

ALWAYS,
ASYNC_ON
LY, NEVER.

Similar in meaning to the "use.async.http.conduit" context property described above. Whether to use the
HttpAsyncClient: ALWAYS for both synchronous and asynchronous calls, ASYNC_ONLY (default) for asynchronous
calls only, NEVER will use HTTPURLConnection for both types of calls.

	Asynchronous Client HTTP Transport

