devcloud-kvm

Like devcloud, devcloud-kvm is designed for development purposes. It allows you to run a full cloudstack environment in a VM. The reason to use
devcloud-kvm over devcloud would be if you intend to develop and test the KVM agent and host related code. If you want to test the Xen hypervisor, use
the normal devcloud.

Note: kindly consider a more modern KVM appliance based CloudStack development with MonkeyBox.

Prerequisites

1. Linux system with kernel 3.1 or newer, kvm_intel or kvm_amd module. Parameter 'nested' should be set to true for module, so your vm can run
vms. Consult your platform's modprobe configs for how to force this if necessary. You can check the current setting via "cat /sys/module/kvm_intel
/parameters/nested".

2. libvirt and virsh utilities installed.

3. 30GB free disk space. The devcloud-kvm disk image is ~1.4G, but it needs room to grow as you use it. The final size will depend on how much

you do.

@ Mac Users

Note that VMware Fusion 5 supports nesting as well. Follow the instructions (INSTALL-HOWTO.txt) found bundled with the vm package in devcl
oud-kvm-fusion.tar.gz (CentOS) or devcloud-kvm-fusion-ubuntu.tar.gz (Ubuntu 12.04) for the 'Setup' portion, and then move on to 'Building'.

Setup

Use a pre-created image
1. Download devcloud-kvm.tar from here (CentOS) or here (Ubuntu).

2. Extract devcloud-kvm.tar to your preferred location
3. cd into devcloud-kvm, define networks:

virsh net-define network-devcl oud-kvm 0. xm
virsh net-define network-devcl oud-kvm 1. xm
virsh net-start devcl oud-kvm 0

virsh net-start devcloud-kvm 1

virsh net-autostart devcl oud-kvm 0

virsh net-autostart devcloud-kvm1

4. Open devcloud-kvm.xml, change file path of the qcow2 to point to the path on your machine
5. Define and start VM:

virsh define devcl oud-kvm xni
virsh start devcl oud- kvm

6. Connect to localhost:50 via VNC to get to the VM's console. Optionally add an /etc/hosts entry for it so you can get to it by name. Login for root is
'‘password'. You can also ssh to 192.168.100.10 or 172.17.10.10 as root.

Create the VM from scratch

1. Build the image manually by following the instructions here.

Building (CentOS devcloud-kvm)

1 For this tutorial we'll assume that you start in the /root directory and that you'll clone the code there

1 Both the CentOS and Ubuntu versions of devcloud-kvm use the same networking/ip setup. If you intend to use both at the same time, you'll
need to make your own adjustments

1. install your IDE of choice, git checkout cloudstack.

git clone https://git-w p-us.apache. org/repos/ asf/cl oudst ack. gi t

https://github.com/rhtyd/monkeybox
http://marcus.mlsorensen.com/cloudstack-extras/devcloud-kvm.tar
http://marcus.mlsorensen.com/cloudstack-extras/devcloud-kvm-ubuntu.tar
https://cwiki.apache.org/confluence/display/CLOUDSTACK/Creating+the+devcloud-kvm+environment+from+scratch
http://marcus.mlsorensen.com/cloudstack-extras/devcloud-kvm-fusion.tar.gz
http://marcus.mlsorensen.com/cloudstack-extras/devcloud-kvm-fusion.tar.gz
http://marcus.mlsorensen.com/cloudstack-extras/devcloud-kvm-fusion-ubuntu.tar.gz

2. CD into the locally cloned repo, compile, deploy database, and start cloudstack:

The first time, it's a good idea to build the RPMs and install them. This puts all of the
dependencies in the right places. In subsequent development, you can build just the portion
you're working on and copy it to the right place (or just build RPMs again and install those):

make sure you have rpmbuild package installed

sudo yuminstall rpmbuild

build

cd cl oudstack

git checkout <insert branch you want to work on here>

cd packagi ng

./ package. sh -d centos63

#i nst al

cd ../../dist/rpnbuil d/ RPMS/ x86_64

rm -f cl oudst ack- bar enet al - agent *

rpm - Uvh cl oudst ack*

sed debug node in cloudstack agent

sed -i 's/INFQ DEBUE g' /etc/cloudstack/agent/| og4j-cloud. xn

#depl oy dat abase

cl oudst ack- set up- dat abases cl oud: passwor d@ ocal host --depl oy-as root

#depl oy managenent server

cl oudst ack- set up- managenent

#wait 30 seconds so any db upgrades can conplete

nysqgl -e "update cloud.configuration set val ue=8096 where nane='integration. api.port
nysql -e "update cloud. configuration set value="true' where name='systemvm use. | ocal.storage
nysqgl -e "update cloud.configuration set value='fal se' where nane='consol eproxy.restart'"
nmysqgl < /root/cl oudstack/tool s/ devcl oud- kv devcl oud- kvm sq

service cloudstack-nmanagenent restart

Management server should be starting, may take 30 seconds. You can try going to http://172.17.10.10:8080/client to check.

3. Deploy fresh advanced networking zone via marvin autoconfig (requires integration port to be open on 8096, either manually via global config, or

via the mysql statement above):

cd /root/cl oudstack

mvn - P devel oper, systenmvm cl ean install

cd tools

easy_install marvin/dist/Marvin-0.1.0.tar.gz
#f or KVM based hypervi sor

python2. 7 marvin/ marvi n/ depl oyDat aCenter. py -i devcl oud- kvm devcl oud- kvm advanced. cfg
#slightly different network config for VMwvare Fusion based hypervisor
pyt hon2. 7 marvi n/ marvi n/ depl oyDat aCenter.py -i devcl oud-kvn devcl oud- kvm advanced- f usi on. cfg

1 Deploying the marvin configuration will start the cloud-agent on the devcloud-kvm host when it adds the host to the zone. Subsequent
code changes, recompiles, when the zone is already configured will require a manual restart via 'service cloudstack-agent restart'.

4. Stop/restart management server to pick up global config changes.
5. Connect to http://172.17.10.10:8080/client for the web Ul, or do whatever you set up devcloud-kvm to do!

Building (Ubuntu devcloud-kvm)

For this tutorial we'll assume that you start in the /root directory and that you'll clone the code there

Both the CentOS and Ubuntu versions of devcloud-kvm use the same networking/ip setup. If you intend to use both at the same time, you'll
need to make your own adjustments

1. install your IDE of choice, git checkout cloudstack.

git clone https://git-w p-us.apache. org/ repos/ asf/cl oudst ack. gi t

2. CD into the locally cloned repo, compile, deploy database, and start cloudstack:

The first time, it's a good idea to build the DEBs and install them. This puts all of the
dependencies in the right places. In subsequent development, you can build just the portion
you're working on and copy it to the right place (or just build DEBs again and install those):

http://172.17.10.10:8080/client
http://172.17.10.10:8080/client

build
cd cl oudst ack
git checkout <insert branch you want to work on here>

nmvn clean install -P devel oper, systemm

dpkg- bui | dpackage -uc -us

#install

dpkg -i ../*.deb

sed debug node in cloudstack agent

sed -i 's/INFQ DEBUE g' /etc/cloudstack/agent/| og4j-cloud. xm

#depl oy dat abase

cl oudst ack- set up- dat abases cl oud: passwor d@ ocal host --depl oy-as root

#depl oy nanagenent server

cl oudst ack- set up- neanagenent

#wait 30 seconds so any db upgrades can conplete

nysqgl -e "update cloud.configuration set val ue=8096 where nane='integration.api.port'"

nysqgl -e "update cloud.configuration set value="true' where name='system vm use. | ocal .storage'"
servi ce cloudstack-nanagenment restart

Management server should be starting, may take 30 seconds. You can try going to http://172.17.10.10:8080/client to check.
3. Deploy fresh advanced networking zone via marvin autoconfig (requires integration port to be open on 8096, either manually via global config, or
via the mysql statement above):

mvn - P devel oper, systenvm cl ean installnvn -P devel oper, systemvm cl ean install

cd tools
mvnpyt hon marvi n/ mar vi n/ depl oyDat aCenter. py -i devcl oud- kvm devcl oud- kvm advanced. cfg

1 Deploying the marvin configuration will start the cloud-agent on the devcloud-kvm host when it adds the host to the zone. Subsequent
code changes, recompiles, when the zone is already configured will require a manual restart via 'service cloudstack-agent restart'.

4. Stop/restart management server to pick up global config changes.
5. Connect to http://172.17.10.10:8080/client for the web Ul, or do whatever you set up devcloud-kvm to do!

Working with an existing devcloud-kvm

1 thisis out of date. Running directly from mvn seems to be broken at the moment, or | don't know how to do it. For now probably best to
generate RPMs and reinstall them

If you're developing, pulled a new branch, etc on a devcloud-kvm that you've already set up, follow these steps to redeploy new code.

1. Stop your management server by killing your jetty process (CTRL+C)
2. Stop cloudstack-agent:

service cloudstack-agent stop

3. Compile your new code:

mvn - P devel oper, systenvm cl ean install

® Optional, redeploy database. If you do this all of your existing VMs will be orphaned, need to be manually shut down and deleted, unless
you cleaned them up before you stopped the management server. You generally only need to do this if you want to start from scratch or
the database schema has changed.

cl oudst ack- set up- dat abases cl oud: passwor d@ ocal host --depl oy-as root
cd /root/cl oudstack
nysqgl < tool s/devcl oud-kvni devcl oud- kvm sql

4. Start your management server:

http://172.17.10.10:8080/client
http://172.17.10.10:8080/client

m/n -pl :cloud-client-ui jetty:run

® |f you didn't wipe out your database, start the cloudstack-agent:

service cloudstack-agent start

® |f you DID wipe out your database, redeploy your config:

pyt hon tool s/ marvin/ marvi n/ depl oyDat aCenter. py -i tool s/ devcl oud-kvnt devcl oud- kvm advanced. cfg

Then restart your management server as above.

0)

The above assumes you want to run the management server out of the checked-out repo code. It compiles the code in place
and runs it from the tree. Changes to the agent, changes to the systemvm.iso, or any other installed code will need to be

copied into place on the system. If you're not strictly working on management server code it's probably best to just rebuild the
RPMs and install those, then restart cloudstack-management and cloudstack-agent.

Network Diagram

Developer's internet
connection
L4

INSIDE DEV COMPUTER

102.168.100.1
(NAT ROUTER)

172.17.10.1
(NAT ROUTER)

~p

devcloug-kvm-1
(192.168{100.0/24)

Developer's Computer

>

devcloyd-kvm-0
(172.17]10.0/24)

guest vlan

F2-3-VM -2-4-VM

172.17.10.10

INSIDE DEVCLOUD-KVM

cloudbrd
(public) (management)
develoud-kvm
virtual app
r-24VM ﬂ
guest vian

-3-5-VM i-3-6-VM

Using devcloud-kvm to test

Testing with marvin is conducted using Python, and requires Python 2.7. The devcloud-kvm image has Python 2.7 as an altinstall, therefore any testing
should be done by executing "python2.7", and any easy-installs should be done via 'easy_install-2.7'. Example:

easy_install-2.7 tools/marvin/dist/Marvin-0.1.0.tar.gz

Other than that, you should largely be able to follow the instructions at https://cwiki.apache.org/confluence/display/CLOUDSTACK/Testing+with+Python

Keep in mind that some of the tests will require a specific zone configuration.

https://cwiki.apache.org/confluence/display/CLOUDSTACK/Testing+with+Python

	devcloud-kvm

