
Camel 3.0 - Message Store

For the initial brainstorming on the dev mailing list, please check .this thread

From the Camel 3.0 ideas page

(+1: hadrian, claus)
We should make this EIP easier to use for end users, but offering a better public API. And also have a pluggable message store, with filters that can filter
what should be stored. As well pluggable marshallers so people can marshal data from Exchange into a format the message store can store (BLOB, XML,
JSon etc.).
A Message Store could provide transparent persistence to various EIP patterns (or used directly). Implementations would handle the mapping to the
underlying database or file system or NoSQL or memory or whatever.
Message Store implementations are already there in various places, using different approaches, like in Stream Caching (only file system),
AggregationRepository or IdempotentRepository. A Message Store is requested for in other places like Reliable stream resequencing (CAMEL-949) or
Persistent Dead Letter Queue (CAMEL-4575).

Summary

In Camel 2.x, a is not a "first class citizen" in the sense of a architectural concept, which can be applied consistently whereever needed.Message Store
Camel 3.0 should introduce a unified, generic, pluggable Message Store that consolidates the different approaches and allows to similarly parameterize
persistence to various EIP patterns.
It should be usable independently of EIP patterns as well.
Implementations would handle the mapping to the underlying persistence layer, which can be InMemory, RDBMS, NoSQL-based etc. and can be chosen
based on the requirements towards reliability (survive system shutdowns with losing messages) and scalability (reduce memory consumption when
processing many/big messages).

Side note: Spring Integration provides a .corresponding concept

List of proposed features

Generically, entries in a Message Store can be created, updated, read and deleted.
Ability to temporarily store exchanges for the following EIPs:

Aggregator, Multicast, RecipientList, Splitter : alternative to AggregationRepository, making it eventually obsolete
Streaming Resequencer (CAMEL-949)
Stream Caching
Claim check

Ability to store exchanges for a defined period of time
Idempotent Consumer
Dead Letter Queue (CAMEL-4575)
Destination for the Tracer

Ability to permanently store exchanges (e.g. for audit trails)
Provide a certain level of manual retry. That is to get the original message from the store and feed it back in the originating route.
Flexibility to specify what part of an exchange should be stored (e.g. what exchange properties and message headers) and in which format (e.g.
object serialization, JSON, using encryption)
Possibility to provide a filter condition to determine which exchanges should be stored (e.g. only failed exchanges, only with a certain message
header)
Polling Consumer to randomly access a message store
Producer to write an exchange into a message store

There is a default message store defined for the Camel Context. This can be overridden by a route-specific message store. This again can be
overridden by a specific EIP processor.

Message Store Data

In order to disambiguate stored exchanges and make them retrievable again, message store entries must carry attributes in addition to the marshaled
exchange.

Item Description/Reason

ID Generated unique ID of the entry

Work in progress

The page intends to collect all ideas and proposals around the idea of a Message Store as a architectural concept in Camel. No implementation
has started yet. You can participate by sharing your input here or post it to the dev mailing list.

Work in progress

Feel free to add, edit, comment.... At some time we probably need to assign priorities as to what is indispensable for Camel 3.0 and what could
be delivered in a later patch release

http://camel.465427.n5.nabble.com/DISCUSS-Message-Store-td5721454.html
http://static.springsource.org/spring-integration/reference/htmlsingle/#message-store
http://eaipatterns.com/StoreInLibrary.html

Exchang
e

exchange (or parts thereof), usually in some marshalled form (except in-memory stores)

CamelC
ontext

A message store may be used by several CamelContext instances

Correlati
on

Correlation ID to be able to aggregate related exchanges

Source Identifier that uniquely describes the point in the route from which an exchange was stored. E.g. there might be more than one aggregator processor in a
route. Could also be used to manually or automatically refeed exchanges back into the route

Status Status of an exchange (e.g. PROCESSING, DONE, FAILED)

Creation
Time

Timestamp when the entry was created

Expiratio
nTime

Timestamp when the entry can be considered as expired and picked up by some cleaning process

... ... more?

Code examples

This section intends to demonstrate the usage of a Message Store by providing hypothetical code snippets, e.g.

AggregatorExample.java

...
from(...)
 .aggregate()
 .correlationExpression(header(id))
 .aggregationStrategy(myStrategy)
 .completionTimeout(10000)
 .messageStore(myStore)
...

Claim check

THe claim check pattern temporarily reduces the data volume of the message by storing content in a message store in exchange for a claim check token.
The content is retrieved later on before it's needed again.

Claim Check EIP store

// Optionally: override default store from context
// (ohr:) IMHO I don't think that this configuration level is really necessary
defaultMessageStore(myStore);

// 1) Store body.
// 2) Set body to null.
// 3) Set Exchange.CLAIM_CHECK header to unique claim id.
from(...)
 .checkIn() // store body in default store
 // .checkIn(header('bigHeader'), customStore) : store header in custom store
 .to(...);

Work in progress

Sometimes it is easier to express thoughts by providing a fictional piece of code along with some comments....

Claim Check EIP read

// 1) Lookup for the Exchange.CLAIM_CHECK header value.
// 2) Read the message.
// 3) Set body to the value fetched from the store.
from(...)
 // .setHeader(Exchange.CLAIM_CHECK, const("id")) : header should still contain the claim id
 .reclaim() // read body from default store
 // .reclaim().aggregationStrategy(myStrategy) : more generically using a aggregation strategy
 // .reclaim(customStore).aggregationStrategy(myStrategy) : reclaim from custom store using a aggregation
strategy
 .to(...);

Open issues:

exception handling if there's no data available for a specific token
clean up of stale content that was never claimed back
maybe return some kind of DataHandler instead of a token (cf. CXF MTOM attachments) and retrieve content transparently?

	Camel 3.0 - Message Store

