Camel JMX

Camel JMX

Apache Camel has extensive support for JMX to allow you to monitor and control the Camel managed objects with a JMX client. Camel also provides a JMX
component that allows you to subscribe to MBean notifications. This page is about how to manage and monitor Camel using JMX.

Activating JMX in Camel

Spring JAR Dependencies Required By Camel 2.8 or Older

The following Spring jar files must be on the classpath in order for Camel to be able to use JMX instrumentation:
spring-context.jar

spring-aop.jar

spring-beans. jar
spring-core.jar

If these jar files are not on the classpath Camel will fallback to non JIMX mode. Camel will log a warning to this affect using the logger: or g. apache.
canel . i npl . Def aul t Canel Cont ext .

From Camel 2.9: the Spring jar files are no longer required for Camel to run in JMX mode.

Using JMX to manage Apache Camel

By default, IMX instrumentation agent is enabled in Camel, which means that Camel runtime creates and registers MBean management objects with a MBe
anSer ver instance in the VM. This allows Camel users to instantly obtain insights into how Camel routes perform down to the individual processor level.

The supported types of management objects are endpoint, route, service, and processor. Some of these management objects also expose lifecycle
operations in addition to performance counter attributes.

The DefaultManagementNamingStrategy is the default naming strategy which builds object names used for MBean registration. By default or g. apache.
canel is the domain name for all object names created by Canel Nam ngSt r at egy. The domain name of the MBean object can be configured by Java
VM system property:

-Dorg.apache.camel.jmx.mbeanObjectDomainName=your.domain.name
Or, by adding a j nxAgent element inside the canel Cont ext element in Spring configuration:

<camelContext id="camel" xmIns="http://camel.apache.org/schema/spring"> <jmxAgent id="agent" mbeanObjectDomainName="your.domain.name"/> ... <
/camelContext>

Spring configuration always takes precedence over system properties when they both present. It is true for all IMX related configurations.

Disabling JMX instrumentation agent in Camel

You can disable JMX instrumentation agent by setting the Java VM system property as follow. The property value is treated as bool ean.
-Dorg.apache.camel.jmx.disabled=true

Or, by adding a j nxAgent element inside the canel Cont ext element in Spring configuration:

<camelContext id="camel" xmIns="http://camel.apache.org/schema/spring"> <jmxAgent id="agent" disabled="true"/> ... </camelContext>
Or in Camel 2.1 its a bit easier (not having to use JVM system property) if using pure Java as you can disable it as follows:

CamelContext camel = new DefaultCamelContext(); camel.disableIMX();

Locating a MBeanServer in the Java VM

Each CamelContext can have an instance of InstrumentationAgent wrapped inside the InstrumentationLifecycleStrategy. The InstrumentationAgent is the
object that interfaces with a MBeanServer to register/unregister Camel MBeans. Multiple CamelContexts/InstrumentationAgents can/should share a MBean
Ser ver . By default, Camel runtime picks the first MBeanSer ver returned by MBeanServerFactory.findMBeanServer method that matches the default
domain name of or g. apache. canel . You may want to change the default domain name to match the MBeanSer ver instance that you are already using
in your application. Especially, if your MBeanSer ver is attached to a JMX connector server, you will not need to create a connector server in Camel.

You can configure the matching default domain name via system property.
-Dorg.apache.camel.jmx.mbeanServerDefaultDomain=<your.domain.name>
Or, by adding a j nxAgent element inside the canel Cont ext element in Spring configuration:

<camelContext id="camel" xmIns="http://camel.apache.org/schema/spring"> <jmxAgent id="agent" mbeanServerDefaultDomain="your.domain.name"/> ...
</camelContext>

https://cwiki.apache.org/confluence/display/CAMEL/JMX
https://cwiki.apache.org/confluence/display/CAMEL/JMX
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/management/mbean/ManagedEndpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/management/mbean/ManagedRoute.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/management/mbean/ManagedService.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/management/mbean/ManagedProcessor.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/management/DefaultManagementNamingStrategy.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/InstrumentationAgent.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/management/InstrumentationLifecycleStrategy.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServerFactory.html#findMBeanServer(java.lang.String)

If no matching MBeanSer ver can be found, a new one is created and the new MBeanSer ver 's default domain name is set according to the default and
configuration as mentioned above.

It is also possible to use the PlatformMBeanServer when it is desirable to manage JVM MBeans by setting the system property. The MBeanSer ver default
domain name configuration is ignored as it is not applicable.

From Camel 1.5: the default value of usePl at f or mvBeanSer ver ist r ue. Set the property to f al se to disable using platform MBeanSer ver .
-Dorg.apache.camel.jmx.usePlatformMBeanServer=True
Or, by adding a j nxAgent element inside the canel Cont ext element in Spring configuration:

<camelContext id="camel" xmIns="http://camel.apache.org/schema/spring"> <jmxAgent id="agent" usePlatformMBeanServer="true"/> ... </camelContext>

Creating JMX RMI Connector Server

JMX connector server enables MBeans to be remotely managed by a JMX client such as JConsole; Camel JMX RMI connector server can be optionally
turned on by setting system property and the MBeanSer ver used by Camel is attached to that connector server.

-Dorg.apache.camel.jmx.createRmiConnector=True
Or, by adding a j nxAgent element inside the canel Cont ext element in Spring configuration:

<camelContext id="camel" xmIns="http://camel.apache.org/schema/spring"> <jmxAgent id="agent" createConnector="true"/> ... </camelContext>

JMX Service URL

The default JIMX Service URL has the format:
service:jmx:rmi:///jndi/rmi://localhost:<registryPort>/<serviceUrlPath>

where r egi stryPort is the RMI registry port and the default value is 1099.

You can set the RMI registry port by system property.
-Dorg.apache.camel.jmx.rmiConnector.registryPort=<port number>

Or, by adding a j nxAgent element inside the canel Cont ext element in Spring configuration:

<camelContext id="camel" xmIns="http://camel.apache.org/schema/spring"> <jmxAgent id="agent" createConnector="true" registryPort="port number"/> ...
</camelContext>

where ser vi ceUr | Pat h is the path name in the URL and the default value is / j nxr m / canel .

You can set the service URL path by system property.

-Dorg.apache.camel.jmx.serviceUrlPath=<path> Setting ManagementAgent settings in Java

From Camel 2.4: various options can also be set on the Managenent Agent :{snippet:id=el|lang=javalurl=camel/trunk/camel-core/src/test/java/org/apache
/camel/management/ManagedServiceUrIPathTest.java}

Or, by adding a j nxAgent element inside the canel Cont ext element in Spring configuration:

<camelContext id="camel" xmIns="http://camel.apache.org/schema/spring"> <jmxAgent id="agent" createConnector="true" serviceUrlPath="path"/> ... <
/camelContext>

By default, RMI server object listens on a dynamically generated port, which can be a problem for connections established through a firewall. In such
situations, RMI connection port can be explicitly set by the system property.

-Dorg.apache.camel.jmx.rmiConnector.connectorPort=<port number>
Or by adding a j mxAgent element inside the canel Cont ext element in Spring configuration:

<camelContext id="camel" xmIns="http://activemq.apache.org/camel/schema/spring"> <jmxAgent id="agent" createConnector="true" connectorPort="port
number"/> ... </camelContext>

When the connector port option is set, the JMX service URL will become:

service:jmx:rmi://localhost:<connectorPort>/jndi/rmi://localhost:<registryPort>/<serviceUrlPath>
System Properties for Camel JMX Support

Property Name value Description

org. apache. canel .jnx true/false Whentrue JMXinenabledin Camel.

See more system properties in this section below: jmxAgent Properties Reference

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/management/ManagementFactory.html#getPlatformMBeanServer()

How to use authentication with JMX

JMX in the JDK have features for authentication and also for using secure connections over SSL. You have to refer to the SUN documentation how to use
this:

® http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html
® http://java.sun.com/javase/6/docs/technotes/guides/management/agent.html

JMX inside an Application Server

Tomcat 6
See this page for details about enabling JMX in Tomcat.
In short, modify your cat al i na. sh (or cat al i na. bat in Windows) file to set the following options...

set CATALINA_OPTS=-Dcom.sun.management.jmxremote \ -Dcom.sun.management.jmxremote.port=1099 \ -Dcom.sun.management.jmxremote.
ssl=false \ -Dcom.sun.management.jmxremote.authenticate=false

JBoss AS 4
By default JBoss creates its own MBeanSer ver . To allow Camel to expose to the same server follow these steps:
® Tell Camel to use the Platform MBeanSer ver (This defaults to true in Camel 1.5)

<camel:camelContext id="camelContext"> <camel;jmxAgent id="jmxAgent" mbeanObjectDomainName="org.yourname" usePlatformMBeanServer="true"
/> </camel:camelContext>

® Alter your JBoss instance to use the Platform MBeanSer ver .

® Add the following property to your JAVA_OPTS by editing r un. sh orrun. conf -Dj boss. pl at f or m nbeanser ver . See http://wiki.jboss.org
/wiki/JBossMBeansInJConsole

WebSphere
Alter the mheanSer ver Def aul t Donai n to be WebSpher e

<camel:;jmxAgent id="agent" createConnector="true" mbeanObjectDomainName="org.yourname" usePlatformMBeanServer="false"
mbeanServerDefaultDomain="WebSphere"/>

Oracle OC4j

The Oracle OC4J J2EE application server will not allow Camel to access the platform MBeanSer ver . You can identify this in the log as Camel will log a WA
RN.

XXX XX, XXXX XX:XX:XX XX org.apache.camel.management.InstrumentationLifecycleStrategy onContextStart WARNING: Could not register CamelContext
MBean java.lang.SecurityException: Unauthorized access from application: xx to MBean: java.lang:type=ClassLoading at oracle.oc4j.admin.jmx.shared.
UserMBeanServer.checkRegisterAccess(UserMBeanServer.java:873)

To resolve this you should disable the IMX agent in Camel, see section Disabling JMX instrumentation agent in Camel

Advanced JMX Configuration

The Spring configuration file allows you to configure how Camel is exposed to JMX for management. In some cases, you could specify more information
here, like the connector's port or the path name.

Example:

<camelContext id="camel" xmIns="http://camel.apache.org/schema/spring"> <jmxAgent id="agent" createConnector="true" registryPort="2000"
mbeanServerDefaultDomain="org.apache.camel.test"/> <route> <from uri="seda:start"/> <to uri="mock:result"/> </route> </camelContext>

If you wish to change the Java 5 JMX settings you can use various JMX system properties

For example you can enable remote JMX connections to the Sun JMX connector, via setting the following environment variable (using set or export
depending on your platform). These settings only configure the Sun JMX connector within Java 1.5+, not the JIMX connector that Camel creates by default.

SUNJMX=-Dcom.sun.management.jmxremote=true -Dcom.sun.management.jmxremote.port=1616 \ -Dcom.sun.management.jmxremote.
authenticate=false -Dcom.sun.management.jmxremote.ssl=false

(The SUNJMX environment variable is simple used by the startup script for Camel, as additional startup parameters for the JVM. If you start Camel directly,
you'll have to pass these parameters yourself.)

jmxAgent Properties Reference

Spring property System property Default Description
Value

id The JMX agent name, and it is not optional.

http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html
http://java.sun.com/javase/6/docs/technotes/guides/management/agent.html
http://tomcat.apache.org/tomcat-6.0-doc/monitoring.html
http://wiki.jboss.org/wiki/JBossMBeansInJConsole
http://wiki.jboss.org/wiki/JBossMBeansInJConsole
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#properties

usePl at f or mVBea
nServer

nbeanSer ver Def a
ul t Donai n

nmbeanObj ect Doma
i nNane

creat eConnect or

regi stryPort

connect or Por t

serviceUrl Pat h

onl yRegi sterPro
cessor Wt hCust o
md

statisticsLevel

i ncl udeHost Nane

useHost | PAddr ess

| oadSt ati sticsE
nabl ed

endpoi nt Runti me
St ati sti csEnabl
ed

or g. apache. canel . j nx.
usePl at f or mvBeanSer ver

org. apache. canel . j nx.
nbeanSer ver Def aul t Domai n

org. apache. canel . j nx.
nmbeanCbj ect Domai nNane

or g. apache. canel . j nx.
cr eat eRm Connect

org. apache. canel . j nx.
rm Connector.registryPort

or g. apache. canel . j nx.
rm Connect or. connect or Port

org. apache. canel . j nx.
serviceUr | Pat h

org. apache. canel . j nx.
onl yRegi st er Processor Wt hC
ustom d

org. apache. canel . j nx.
i ncl udeHost Nane

org. apache. canel . j nx.
useHost | PAddr ess

org. apache. canel . j nx.
| oadSt ati sti csEnabl ed

org. apache. canel . j nx.
endpoi nt Runti neStatisti cs
nabl ed

fal se,true -
Release 1.5 or
later

org. apache.
camel

org. apache.
camel

fal se

1099

-1 (dynamic)
[j mxrm

/ canel

fal se

Al
Def aul t

fal se

fal se

true

If t r ue, it will use the MBeanSer ver from the JVM.

The default IMX domain of the MBeanSer ver .

The JMX domain that all object names will use.

If we should create a JMX connector (to allow remote management) for the MBeanSer ver

The port that the IMX RMI registry will use.

The port that the IMX RMI server will use.

The path that IMX connector will be registered under.

Camel 2.0: If this option is enabled then only processors with a custom id set will be
registered. This allows you to filer out unwanted processors in the JIMX console.

Camel 2.1: Configures the level for whether performance statistics is enabled for the
MBean. See section Configuring level of granularity for performance statistics for more
details.

From Camel 2.16: the Al | option is renamed to Def aul t, and a new Ext ended option
has been introduced which allows gathered additional run time JMX metrics.

Camel 2.13: Whether to include the hostname in the MBean naming. From Camel 2.13:
the default is f al se. Previously the default was t r ue.

You can use this option to restore old behavior if really needed.

Camel 2.16: Whether to use hostname or IP Address in the service url when creating
the remote connector. By default the hostname will be used.

Camel 2.16:Whether load statistics is enabled (gathers load statistics using a
background thread per CamelContext).

Camel 2.16: Whether endpoint runtime statistics is enabled (gathers runtime usage of
each incoming and outgoing endpoints).

Configuring Whether to Register MBeans always, For New Routes or Just by Default

Available as of Camel 2.7

Camel now offers 2 settings to control whether or not to register mbeans

Option

regi ster Al ways

regi st er NewRout es true

Default Description

fal se

route.

If enabled then MBeans is always registered.

If enabled then adding new routes after CamelContext has been started will also register MBeans from that given

By default Camel registers MBeans for all the routes configured when its starting. The r egi st er NewRout es option control if MBeans should also be
registered if you add new routes thereafter. You can disable this, if you for example add and remove temporary routes where management is not needed.

Be a bit caution to use the r egi st er Al ways option when using dynamic EIP patterns such as the Recipient List having unique endpoints. If so then each
unique endpoint and its associated services/producers would also be registered. This could potential lead to degradation in system performance due the
rising number of mbeans in the registry. A MBean is not a light-weight object and thus consumes memory.

Monitoring Camel using JMX

Using JConsole to monitor Camel

The Canel Cont ext should appear in the list of local connections, if you are running JConsole on the same host as Camel. To connect to a remote
Camel instance, or if the local process does not show up, use Remote Process option, and enter an URL.

Here is an example localhost URL: service:jm:rm :///jndi/rm://1ocal host: 1099/ j nxrm / canel

Using the Apache Camel with JConsole

https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/EIP
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

800

J25E 5.0 Monitoring & Management Console: service:jma:rmi:///jndifrmi:/ /localhost: 1099/ jmxrmi/camel

» [java.util.logging
¥ [org.apache.camel
¥ [l pebble/camel
¥ [consumers
@ FileConsumer(0x5dd78d57)
@ FileConsumer(0x783eef33)
@ JmsConsumer(0x30ea0dfc)
@@ context
¥ [l endpoints
@ “file:/ ftarget/test\Tid=0xa0f754a

@ “jms:test.MyQueue\7id=0x68c2el
@ “spring-event:default\?id=0x20a
¥ [processors
» [beanl
» [0l
» [w02
¥ [routes
» FodeE
@ “node2”
@ “node3”

@ “file:src/data\?id=0x1984e9d2" *

FirstExchangeCompletionTime
FirstExchangeFailureTime
LastExchangeCompletionTime
LastExchangeFailureTime

Connection
| Summary Memory Threads Classes = MBeans | VM]
MBeans
FEJ Tree { Attributes | Operations MNaotifications Info |
» [IMImplementation :
Name Value
> com.sun.management
g) g Description EventDrivenConsumerRoute[Endpoint[file:src/data?no...
> Java.lang End pointUri file:src/data?noop =true

Wed Oct 22 16:00:07 EDT 2008

Wed Oct 22 16:00:07 EDT 2008

MaxProcessingTimeMillis 95.712
MeanProcessingTimeMillis 55.07
MinProcessingTimeMillis 14.428
NumCompleted 2
NumExchanges 2

NumPFailed 0
TotalProcessingTimeMillis 110.14

(Refresh)

Which endpoints are registered

In Camel 2.1 onward only si ngl et on endpoints are registered as the overhead for non singleton will be substantial in cases where thousands or millions

of endpoints are used. This can happens when using a Recipient List EIP or from a Pr oducer Tenpl at e that sends a lot of messages.

Which processors are registered

See this FAQ.

How to use the JMX NotificationListener to listen the camel events?

The Camel notification events give a coarse grained overview what is happening. You can see lifecycle event from context and endpoints and you can see
exchanges being received by and sent to endpoints. From Camel 2.4 you can use a custom JMX NotificationListener to listen the camel events.

First you need to set up a JnxNot i fi cati onEvent Noti fi er before you start the CamelContext.{snippet:id=el|lang=javalurl=camel/trunk/camel-core
Isrcltest/javal/org/apache/camel/management/JmxNotificationEventNotifierTest.java}Second you can register your listener for listening the event{snippet:
id=e2|lang=javalurl=camel/trunk/camel-core/src/test/java/org/apache/camel/management/JmxNotificationEventNotifierTest.java}

Using the Tracer MBean to get fine grained tracing

Additionally to the coarse grained notifications above Camel 2.9.0 support JMX Notification for fine grained trace events. These can be found in the Tracer
MBean. To activate fine grained tracing you first need to activate tracing on the context or on a route. This can either be done when configuring the context
or on the context / route MBeans.

As a second step you have to set the j nxTraceNot i fi cati ons attribute to t r ue on the tracer. This can again be done when configuring the context or
at run time on the tracer MBean.

Now you can register for Tr aceEvent Notifications on the Tracer MBean using JConsole. There will be one Notification for every step on the route with all
exchange and message details.

https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Why+is+my+processor+not+showing+up+in+JConsole

|| 2 Java Monitoring & Management Conso

|£) Connection Window Help - & x
‘ Overview | Memory |Threads | Classes I WM Summary‘ MBeans ‘ ==
. IMImplementation Motification buffer
. COM.SUN.management
| | java.lang TimeS... Type UserData ... Message Event Source
| java.utillogging 10:26:4... jmx. attribute. .. 1 |AttributeChang. .. [javax.management.Attri... |org.apache. camel:context=sopwin58/camel-1...
| org.apache.camel 10:28:3...[TraceNotifica... [{TimeStamp=Fri Oct 07 10:26:38 CEST 2011, Headers... |14[Test 121 javax.management.MNotifi... Exchange[Message: Test 12 1]
- |, components 10:26:3...[TraceNotifica... | {TimeStamp=Fri Oct 07 10:26:38 CEST 2011, Headers... |13[Test 12 javax.management.Notifi... [Exchange[Message: Test 12]
4 | consumers 10:26:3,.. [TraceNotifica... |[{TimeStamp=Fri Oct 07 10:26:38 CEST 2011, Headers... |12[Test 12 javax.management.MNotifi, ., Exchange[Message: Test 12]
. context 10:26:3... [jmx. attribute... 1 |AttributeChang... [javax.management.Attri... jorg.apache. camel:context=sopwin58/camel-1...
| endpoints 10:26:3... jmx. attribute... 1 |AttributeChang. .. [javax.management.Attri... jorg.apache. camel:context=sopwin58/camel-1...
. errorhandlers 10:26:3... [jmx. attribute. .. 1 |AttributeChang... [javax.management. Attri... |org.apache. camel:context=sopwin58/camel-1...
| eventnotifiers 10:26:3... [jmx. attribute. .. 1 |AttributeChang... [javax.management. Attri... |org.apache. camel:context=sopwin58/camel-1...
processors 10:256:3...TraceNotifica... [{TimeStamp=Fri Oct 07 10:26:33 CEST 2011, Headers... [11]Test 111 javax.management.Notifi... Exchange[Message: Test 11 1]
routes 10:25:3... [TraceNotifica... |{TimeStamp=Fri Oct 07 10:26:33 CEST 2011, Headers... [10[Test 11 javax.management.Notifi... [Exchange[Message: Test 11]
services 10:26:3... [TraceNotifica... |[{TimeStamp=Fri Oct 07 10:26:33 CEST 2011, Headers... |3 [Test 11 javax.management.Notifi... Exchange[Message: Test 11]
| threadpools 10:26:2... [TraceNotifica... |[{TimeStamp=Fri Oct 07 10:26:28 CEST 2011, Headers... 8 [Test10 1 javax.management.Notifi. ., Exchange[Message: Test 10 1]
. tracer

3) Headers={myheader=Test 10, breadcrum! i

=1+ | sopwin5a/camel-1
(=68 Tracer(0x7f033a6f)

Body=Test 10

ExchangeId=ID-sopwin58-51211-1317975/

~

10:26:2... [TraceNotifica... [Test 10 javax.management.MNotifi, ., Exchange[Message: Test 10]

EndpointURI=transform[{Simple: ${in.}

Properties={CamelCreatedTimestamp=Fr:

4| 1 | F
N 10:26:2...TraceNotifica... |{TimeStamp=Fri Oct 07 10:26:28 CEST 2011, Headers... |6 [Test 10 javax.management.Notifi... [Exchange[Message: Test 10]
10:26:2...[TraceNotifica... [{TimeStamp=Fri Oct 07 10:26:23 CEST 2011, Headers... |5 Test91 javax.management.MNotifi... Exchange[Message: Test 9 1]
10:26:2... [TraceNotifica... [{TimeStamp=Fri Oct 07 10:26:23 CEST 2011, Headers... |4 [Test9 javax.management.MNotifi... Exchange[Message: Test 9]
10:26:2...[TraceNotifica... [{TimeStamp=Fri Oct 07 10:26:23 CEST 2011, Headers... |3 [Test9 javax.management.MNotifi... Exchange[Message: Test 9]
10:26: 1...[TraceNotifica... [{TimeStamp=Fri Oct 07 10:26:18 CEST 2011, Headers... (2 [Test81 javax.management.MNotifi... Exchange[Message: Test 8 1]
10:28: 1., [TraceNotifica... {TimeStamp=Fri Oct 07 10:26:18 CEST 2011, Headers... |1 [Test8 javax.management.MNotifi... Exchange[Message: Test 8]
10:28: 1...[TraceNotifica... {TimeStamp=Fri Oct 07 10:26:18 CEST 2011, Headers... [0 [Test8 javax.management.MNotifi... Exchange[Message: Test 8]
10:26: L... [jmx. attribute... 1 |AttributeChang... [javax.management.Attri,.. jorg.apache.camelicontext=sopwin58/camel-1...

Subscribe][Unsubscribe][Clear]

Using JMX for your own Camel Code

Registering your own Managed Endpoints

Available as of Camel 2.0

You can decorate your own endpoints with Spring managed annotations @/nagedResour ce to allow to register them in the Camel MBeanSer ver and
thus access your custom MBeans using JMX.

Notice: in Camel 2.1 we have changed this to apply other than just endpoints but then you need to implement the interface or g. apache. canel . spi .
Managenent Awar e as well. More about this later.

For example we have the following custom endpoint where we define some options to be managed:{snippet:id=e1|lang=javalurl=camel/trunk/camel-core
[srcltest/java/org/apache/camel/management/CustomEndpoint.java}From Camel 2.9: it's encouraged that you use the @/anagedResour ce, @/hanagedAt

tribut e, and @/nagedOper at i on attributes from the or g. apache. canel . api . managenent package. This allows your custom code to not depend
on Spring JARSs.

Programming your own Managed Services

Available as of Camel 2.1

Camel now offers to use your own MBeans when registering services for management. What that means is for example you can develop a custom Camel
component and have it expose MBeans for endpoints, consumers and producers etc. All you need to do is to implement the interface or g. apache.

canel . spi . Managenent Awar e and return the managed object Camel should use.

Now before you think oh boys the JMX API is really painful and terrible, then yeah you are right. Lucky for us Spring though too and they created a range

of annotations you can use to export management on an existing bean. That means that you often use that and just return t hi s in the get ManagedObj ect
from the Managenent Awar e interface. For an example see the code example above with the Cust onEndpoi nt .

Now in Camel 2.1 you can do this for all the objects that Camel registers for management which are quite a bunch, but not all.

For services which do not implement this Managenent Awar e interface then Camel will fallback to using default wrappers as defined in the table below:

Type MBean wrapper

Canel Cont ext = ManagedCanel Cont ext
Conponent ManagedConponent
Endpoi nt ManagedEndpoi nt

Consuner ManagedConsuner

Pr oducer ManagedPr oducer

Rout e ManagedRout e
Processor ManagedPr ocessor
Tracer ManagedTr acer
Servi ce ManagedSer vi ce

In addition to that there are some extended wrappers for specialized types such as

Type MBean wrapper

Schedul edPol | Consuner = ManagedSchedul edPol | Consuner

Br owsabl eEndpoi nt ManagedBr owseabl eEndpoi nt
Throttler ManagedThrottl er

Del ayer ManagedDel ayer

SendPr ocessor ManagedSendPr ocessor

And in the future we will add additional wrappers for more EIP patterns.

ManagementNamingStrategy
Available as of Camel 2.1

Camel provides a pluggable API for naming strategy by or g. apache. canel . spi . Managenent Nam ngSt r at egy. A default implementation is used to
compute the MBean names that all MBeans are registered with.

Management naming pattern
Available as of Camel 2.10

From Camel 2.10: we made it easier to configure a naming pattern for the MBeans. The pattern is used as part of the Qbj ect Nane as they key after the
domain name. By default Camel will use MBean names for the ManagedCanel Cont ext MBean as follows:

org.apache.camel:context=localhost/camel-1,type=context,name=camel-1

From Camel 2.13: the host nane is not included in the MBean names, so the above example would be as follows:
org.apache.camel:.context=camel-1,type=context,name=camel-1

If you configure a name on the Canel Cont ext then that name is part of the Obj ect Nanme as well. For example if we have
xml<camelContext id="myCamel" ...>

Then the MBean names will be as follows:

org.apache.camel:context=localhost/myCamel,type=context,name=myCamel

Now if there is a naming clash in the JVM, such as there already exists a MBean with that given name above, then Camel will by default try to auto correct
this by finding a new free name in the JMXMBeanSer ver by using a counter. As shown below the counter is now appended, so we have nyCanel - 1 as
part of the Qbj ect Nane:

org.apache.camel:context=localhost/myCamel-1,type=context,name=myCamel
This is possible because Camel uses a naming pattern by default that supports the following tokens

#canel | d# = the CamelContext id (eg the name)

#name# - same as #camelld#

#count er # - an incrementing counter

#bundl el d# - the OSGi bundle id (only for OSGi environments)

#synbol i cNane# - the OSGi symbolic name (only for OSGi environments)
#ver si on# - the OSGi bundle version (only for OSGi environments)

The default naming pattern is differentiated between OSGi and non-OSGi as follows:

® non OSGI: #nane#
® OSGi: #bundl el d#- #name#
® OSGi Camel 2.13: #synbol i cNanme#

However if there is a naming clash in the JMXMBeanSer ver then Camel will automatic fallback and use the #counter# in the pattern to remedy this. And
thus the following patterns will then be used:

® non OSGI: #nane#- #count er #
® OSGi: #bundl el d#- #name#- #count er #
® OSGi Camel 2.13: #synbol i cNane#- #count er #

If you set an explicit naming pattern, then that pattern is always used, and the default patterns above is not used. This allows us to have full control, very
easily, of the naming for both the Carrel Cont ext id in the Registry as well the IMX MBeans in the JMXMBeanRegi stry.

From Camel 2.15 onwards you can configure the default management name pattern using a JVM system property, to configure this globally for the JVM.
Notice that you can override this pattern by configure it explicit, as shown in the examples further below.

Set a JVM system property to use a default management name pattern that prefixes the name with cool.

System.setProperty(JmxSystemPropertyKeys. MANAGEMENT_NAME_PATTERN, "cool-#name#");

So if we want to explicit name both the Canel Cont ext and to use fixed MBean names, that do not change e.g., has no counters, then we can use the
new management NanePat t er n attribute:

xml<camelContext id="myCamel" managementNamePattern="#name#">

Then the MBean names will always be as follows:
org.apache.camel:context=localhost/myCamel,type=context,name=myCamel

In Java, you can configure the managenent NanePat t er n as follows:
context.getManagementNameStrategy().setNamePattern("#name#");

You can also use a different name in the management NanePat t er n than the id, so for example we can do:
xml<camelContext id="myCamel" managementNamePattern="coolCamel">

You may want to do this in OSGi environments in case you do not want the OSGi bundle id as part of the MBean names. As the OSGi bundle id can
change if you restart the server, or uninstall and install the same application. You can then do as follows to not use the OSGi bundle id as part of the name:

xml<camelContext id="myCamel" managementNamePattern="#name#">

Note this requires that nyCanel is unique in the entire JVM. If you install a 2nd Camel application that has the same Canel Cont ext id and nanagenment N
amePat t er n then Camel will fail upon starting, and report a MBean already exists exception.

ManagementStrategy
Available as of Camel 2.1

Camel now provides a totally pluggable management strategy that allows you to be 100% in control of management. It is a rich interface with many
methods for management. Not only for adding and removing managed objects from the MBeanSer ver , but also event notification is provided as well using
the or g. apache. canel . spi . Event Noti fi er API. What it does, for example, is make it easier to provide an adapter for other management products.
In addition, it also allows you to provide more details and features that are provided out of the box at Apache.

Configuring level of granularity for performance statistics
Available as of Camel 2.1
You can now set a pre set level whether performance statistics is enabled or not when Camel start ups. The levels are

® Ext ended - As default but with additional statistics gathered during runtime such as fine grained level of usage of endpoints and more. This
options requires Camel 2.16 *

® Al / Default - Camel will enable statistics for both routes and processors (fine grained). From Camel 2.16: the Al | option was renamed to D
efaul t.

® Rout esOnl y - Camel will only enable statistics for routes (coarse grained)

® O f - Camel will not enable statistics for any.

From Camel 2.9 onwards the performance statistics also include average load statistics per CamelContext and Route MBeans. The statistics is average
load based on the number of in-flight exchanges, on a per 1, 5, and 15 minute rate. This is similar to load statistics on Unix systems. Camel 2.11 onwards
allows you to explicit disable load performance statistics by setting | oadSt ati sti csEnabl ed=f al se on the <j mkAgent >. Note that it will be off if the
statics level is configured to off as well. From Camel 2.13 onwards the load performance statistics is by default disabled. You can enable this by setting | o
adSt ati sti csEnabl ed=t r ue on the <j mxAgent >.

At runtime you can always use the management console (such as JConsole) to change on a given route or processor whether its statistics are enabled or
not.

What does statistics enabled mean?

Statistics enabled means that Camel will do fine grained performance statistics for that particular MBean. The statistics you can see are many, such as:
number of exchanges completed/failed, last/total/mina/max/mean processing time, first/last failed time, etc.

Using Java DSL you set this level by:

I only enable routes when Camel starts context.getManagementStrategy().setStatisticsLevel(ManagementStatisticsLevel.RoutesOnly);

https://cwiki.apache.org/confluence/display/CAMEL/Registry

And from Spring DSL you do:

xml<camelContext id="camel" xmIns="http://camel.apache.org/schema/spring"> <jmxAgent id="agent" statisticsLevel="RoutesOnly"/> ... </camelContext>

Hiding sensitive information
Available as of Camel 2.12

By default, Camel enlists MBeans in JMX such as endpoints configured using URIs. In this configuration, there may be sensitive information such as
passwords. This information can be hidden by enabling the mask option as shown below:

Using Java DSL you turn this on by:

/I only enable routes when Camel starts context.getManagementStrategy().getManagementAgent().setMask(true);

And from Spring DSL you do:

xml<camelContext id="camel" xmIns="http://camel.apache.org/schema/spring"> <jmxAgent id="agent" mask="true"/> ... </camelContext>

This will mask URIs having options such as password and passphrase, and use xxxxxx as the replacement value.

Declaring which JMX attributes and operations to mask (hide sensitive information)

On the or g. apache. canel . api . managenent . ManagedAt t ri but e and or g. apache. canel . api . managenent . ManagedQper at i on, the
attribute mask can be set to t r ue to indicate that the result of this IMX attribute/operation should be masked (if enabled on JMX agent, see above).

For example, on the default managed endpoints from camel-core or g. apache. canel . api . managenent . nthean. ManagedEndpoi nt MBean, we have
declared that the Endpoi nt Uri JMX attribute is masked.

@ManagedAttribute(description = "Endpoint URI", mask = true) String getEndpointUri();

See Also

® Management Example
® Why is my processor not showing up in JConsole

https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Management+Example
https://cwiki.apache.org/confluence/display/CAMEL/Why+is+my+processor+not+showing+up+in+JConsole

	Camel JMX

